Tai Chi Exercise for Patients With Cardiovascular Conditions and Risk Factors

A SYSTEMATIC REVIEW

Gloria Y. Yeh, MD, MPH, Chenchen Wang, MD, MSc, Peter M. Wayne, PhD, and Russell Phillips, MD

PURPOSE: To conduct a systematic review of the literature evaluating tai chi exercise as an intervention for patients with cardiovascular disease (CVD) or with CVD risk factors (CVDRF).

METHODS: We searched (1) MEDLINE, CAb Alt HealthWatch, BIOSIS previews, Science Citation Index, EMBASE, and Social Science Citation Index from inception through October 2007; (2) Chinese Medical Database, China Hospital Knowledge, China National Knowledge Infrastructure, and China Traditional Chinese Medicine Database from inception through June 2005; and (3) the medical libraries of Beijing and Nanjing Universities. Clinical studies published in English and Chinese including participants with established CVD or CVDRF were included. Data were extracted in a standardized manner; 2 independent investigators assessed methodological quality, including the Jadad score for randomized controlled trials (RCTs).

RESULTS: Twenty-nine studies met inclusion criteria: 9 RCTs, 14 nonrandomized studies, and 6 observational trials. Three studies examined subjects with coronary heart disease, 5 in subjects with heart failure, and 10 in heterogeneous populations that included those with CVD. Eleven studies examined subjects with CVDRF (hypertension, dyslipidemia, impaired glucose metabolism). Study duration ranged from 8 weeks to 3 years. Most studies included fewer than 100 subjects (range, 5–207). Six of 9 RCTs were of adequate quality (Jadad ≥ 3). Most studies reported improvements with tai chi, including blood pressure reductions and increases in exercise capacity. No adverse effects were reported.

CONCLUSION: Preliminary evidence suggests that tai chi exercise may be a beneficial adjunctive therapy for some patients with CVD and CVDRF. Further research is needed.

Cardiovascular disease (CVD) is clearly an important public health problem, with 1 in 3 American adults affected. Mortality due to underlying CVD accounts for more than one third of all deaths. The evidence from long-term prospective studies consistently suggests that the majority of CVD is preventable with healthy lifestyles and modification of known risk factors. While pharmacological therapy is often emphasized, the critical importance of nonpharmacological approaches and lifestyle modifications, including physical activity and exercise, continues to be recognized for both primary and secondary prevention of CVD.

In recent years, with the popularity and prevalence of mind-body therapies, there has been a growing...
interest in tai chi exercise for patients with CVD.3–5 Tai chi (t’ai chi or taiji) has origins in ancient Chinese martial arts and combines gentle physical activity, with elements of meditation, body awareness, imagery, and attention to breathing. The scientific literature describing tai chi is varied, with studies reporting benefits in a number of health conditions, from balance and reduction of falls in frail adults to improvements in quality of life and symptoms in rheumatoid arthritis, human immunodeficiency virus, cancer, and heart failure.6,7 A substantial amount of research examines the cardiovascular effects of tai chi, including cardiorespiratory fitness and exercise capacity, although most data are available for blood pressure.4,8–10

To date, there have been no comprehensive systematic reviews examining the use of tai chi specifically in patients with cardiovascular conditions, and very little is known about what is published in the Chinese language. Our objective was to conduct a systematic review of the Chinese and English language literature on tai chi exercise as an intervention for patients with CVD and cardiovascular risk factors (CVDRF) and to offer recommendations for future research.

METHODS

We conducted electronic literature searches of MEDLINE (from 1966), CABS (from 1973), Alt HealthWatch, BIOSIS previews (from 1969), Science Citation Index (from 1945), EMBASE (from 1991), and the Social Science Citation Index (from 1956) through October 2007, using search terms “tai chi,” “tai chi chuan,” “ta’i chi,” “tai ji,” and “taijiquan.” In addition, we performed searches of the Chinese Medical Database, China Hospital Knowledge, China National Knowledge Infrastructure, and China Traditional Chinese Medicine Database from inception to June 2005 and performed hand searches at the medical libraries of Beijing and Nanjing Universities in China. We also performed hand searches of retrieved articles for additional references.

Eligibility Criteria

Available human clinical studies published in English and Chinese, which specified a target study population with a known cardiovascular condition or with CVDRF (including hypertension, dyslipidemia, and diabetes), were included. Studies that specifically examined subjects with stroke were not included. Studies that examined cardiovascular outcomes in healthy individuals were not included (eg, blood pressure or cholesterol in subjects with normal baseline blood pressure or lipid profiles).

Data Extraction and Synthesis

Data were extracted in a standardized manner by 2 independent reviewers from Chinese language articles with direct translation to English. To assess methodological quality of studies, we developed an A, B, C summary quality-grading system adapted from methods used in Evidence Reports of the AHRQ Evidence-Based Practice Centers (www.ahrq.gov/clinic/epicentre.htm). Two independent investigators assessed methodological quality, evaluating each study according to specific criteria for each study design type (randomized controlled trial [RCT], prospective nonrandomized controlled and noncontrolled studies [NRS], and observational controlled and noncontrolled studies [OBS]) and assigning an A, B, or C grade on the basis of the potential for bias in the study. Quality-grading criteria for each of the 3 design strata are summarized in Table 1. This system evaluates and rates studies within each of the study design strata. By design, it does not attempt to assess the comparative validity of studies across different design strata. Thus, in interpreting the methodological quality of a study, one should note the quality grade and the study design. Grade A was given to studies in which there appeared to be the least amount of bias and results were likely valid. Grade B was given to studies that appeared susceptible to some bias but not sufficient to invalidate the results. Grade C was given to studies with evidence of significant bias that may invalidate the results. For RCTs, in addition to the summary quality grade, we also indicated a modified Jadad score. Because in most cases, double-blinding is impractical in tai chi studies, our modification gave one point for proper single blinding of the outcome assessors. Grading discrepancies between the independent reviewers occurred rarely and were resolved via discussion.

RESULTS

We screened 841 English-language and 859 Chinese-language abstracts and full-text articles for potentially relevant data. A total of 31 studies (14 in English and 17 in Chinese) met the inclusion criteria. Two Chinese studies were excluded: 1 due to poor quality and insufficient information for data extraction and 1 that reported on children with cardiac murmurs and congenital heart disease.11,12 The remaining 29 studies were analyzed, including 9 RCTs, 14 NRS, and 6 OBS.13–41 Studies were conducted in (1) homogeneous populations of subjects with reported coronary heart disease or heart failure (Table 2), (2) heterogeneous populations with a proportion of subjects having a cardiovascular condition (eg, coronary disease,
arrhythmia, “cardiovascular condition” not otherwise
described) (Table 3), and (3) both homogeneous and
diverse homogeneous populations of subjects with CVDRF
(i.e., hypertension, dyslipidemia, impaired glucose
metabolism, or diabetes mellitus) (Table 4). Within
these trials, reported outcomes included blood
pressure, heart rate (HR), exercise capacity, HR variabi-
li ty, lipids, fasting glucose, pulmonary function, car-
diogenic indices, functional measures, flex-
ibility, mood, and quality of life. Study duration
ranged from 8 weeks to 3 years. Most studies included
fewer than 100 subjects (range, 5–207). Study het-
erogeneity precluded formal meta-analysis. No
adverse events associated with tai chi were reported.
Of the 9 RCTs, 5 received an A rating and 2 received
a B rating. Of the 14 NRS, 10 received a B rating. Of
6 OBS, 1 received an A rating and 5 received a B
rating.

Studies in Patients With Reported CVD
(Tables 2 and 3)
The data are limited with only 3 studies that speci-
fically studied patients with coronary disease.5–15 In
the only RCT, Channer et al13 randomized patients
recovering from an acute myocardial infarction to a
mixed tai chi/qigong intervention or to conventional
aerobic exercise or to a cardiac support group. After
8 weeks, both aerobic exercise and tai chi were asso-
ciated with significant reductions in systolic blood
pressure (−4 ± 7.5 and −3 ± 3.3 mm Hg, respec-
tively, both P < .05). Diastolic blood pressure
was improved in the tai chi group only (−2 ± 2.7 mm Hg,
P < .01). No between-group comparisons were
made. This study also reported decreases in resting
HR and greater compliance with tai chi class.13

Similarly, there were only 5 studies examining
patients with heart failure. Two of 3 RCTs were of
decent quality.16,20 Yeh et al16 randomized patients
to a tai chi intervention or to usual care. After 12 weeks,
patients who practiced tai chi showed an increase in
exercise capacity (+84 ± 45 vs −51 ± 88 meters on a
6-minute walk, P < .01), improved B-type natriuret-
ic peptide (−48 ± 105 vs +89 ± 210 pg/mL, P = .03),
and improved disease-specific quality of life using the
Minnesota Living with Heart Failure Questionnaire,
compared with the control group.16 Barrow et al16
found similar results in quality of life, using a 16-week
tai chi intervention compared with usual care. No dif-
fERENCE was seen, however, between groups in exer-
cise tolerance using the incremental shuttle walk test.
A correlation was reported between home practice
time and improvement in walk distance.20 Other
small, prospective, NRS provided limited evidence for
improvements in physiological parameters and func-
tional capacity.18,21 Of note, both Chinese language
studies reported improvements in left ventricular ejection
fraction with tai chi.19,21

Ten studies (5 NRS and 5 OBS) examined tai chi in
diverse homogeneous populations that included some propor-
tion of subjects with CVD (e.g., coronary heart dis-
ease). These studies varied in quality and report
improvements in blood pressure, resting HR, recovery

Table 1 - A, B, C quality-grading criteria for 3 study design strata

<table>
<thead>
<tr>
<th>Randomized controlled trials</th>
<th>Adequate randomization, proper single binding of assessors, and reporting of dropouts (modification of Jadad score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate methods used to assess physical activity</td>
<td>No errors or discrepancies in reporting results</td>
</tr>
<tr>
<td>Adequate description of tai chi intervention (eg, style, training schedule, frequency/duration of classes, instructor experience)</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate description of the cohort; clear inclusion/exclusion criteria</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate methods used to assess physical activity</td>
<td>Adequate description of the cohort; clear inclusion/exclusion criteria</td>
</tr>
<tr>
<td>Adequate description of tai chi intervention (eg, style, training schedule, frequency/duration of classes, instructor experience)</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate description of comparison groups</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Use of validated method for ascertaining clinical outcomes</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate follow-up period</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Completeness of follow-up</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Analysis (multivariate adjustments) and reporting of results; use of appropriate statistical analyses</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Observational studies (controlled and noncontrolled)</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Valid ascertainment of cases</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Unbiased selection of cases</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Appropriateness of the control population (as applicable)</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Clear inclusion/exclusion criteria</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Comparability of cases and controls with respect to potential confounders</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate methods used to assess physical activity</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate description of tai chi intervention (eg, style, training schedule, frequency/duration of classes, instructor experience)</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Adequate description of comparison groups</td>
<td>Adequate description of comparison groups</td>
</tr>
<tr>
<td>Appropriate statistical analyses</td>
<td>Adequate description of comparison groups</td>
</tr>
</tbody>
</table>

ABC summary quality-grading system adapted from methods used in Evidence Reports of the AHRQ Evidence-Based Practice Centers (www.ahrq.gov/clinic/epicindex.htm). Grade: A, least bias, results are valid. B, susceptible to some bias but not sufficient to invalidate the results. C, significant bias that may invalidate the results.

Table 2 • STUDIES EXAMINING TAI CHI IN CORONARY HEART DISEASE AND HEART FAILURE

<table>
<thead>
<tr>
<th>Reference (author, country, language)</th>
<th>Study design</th>
<th>Study population description, mean age</th>
<th>N</th>
<th>Intervention/control details</th>
<th>Main results</th>
<th>Modified Jadad; ABC Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channer et al,13 UK, E</td>
<td>RCT</td>
<td>CHD, postacute MI 56 y</td>
<td>126</td>
<td>Wu style TC/Qigong × 8 wk</td>
<td>↓ BP</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercise to music</td>
<td>Resting HR</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Support group</td>
<td>Greater compliance with TC</td>
<td></td>
</tr>
<tr>
<td>Lan and Chen,14 Taiwan, E</td>
<td>NRS</td>
<td>CHD, Post-CAB (men) 57 y</td>
<td>20</td>
<td>Yang style TC × 1 y</td>
<td>↑ Exercise capacity</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walking</td>
<td>Greater compliance with TC</td>
<td></td>
</tr>
<tr>
<td>Zheng,15 China, C</td>
<td>NRS</td>
<td>CHD, Posthospital discharge 68 y</td>
<td>24</td>
<td>Yang style TC (simplified 24 forms) × 3 mo</td>
<td>No control</td>
<td>C</td>
</tr>
<tr>
<td>Heart failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeh et al,16,17 US, E</td>
<td>RCT</td>
<td>CHF, chronic stable LVEF ≤ 40%; NYHA 64 y</td>
<td>30</td>
<td>Yang style TC × 12 wk</td>
<td>↑ LVEF</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classes I–IV</td>
<td></td>
<td>Usual care</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Wei and Liu,19 China, C</td>
<td>RCT</td>
<td>CHF, LVEF range not specified (CHD 40%, HTN 60%) NYHA Class II–IV 60 y</td>
<td>70</td>
<td>Yang style TC (simplified 24 forms) × 12 wk</td>
<td>No change in exercise tolerance</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Usual care</td>
<td>Improved HF-specific QOL</td>
<td>A</td>
</tr>
<tr>
<td>Barrow et al,20 UK, E</td>
<td>RCT</td>
<td>CHF, chronic stable, systolic- dysfunction LVEF range not specified NYHA Classes II–III 70 y</td>
<td>52</td>
<td>Wu Chian Chuan style × 16 wk</td>
<td>No change in exercise tolerance</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Usual care</td>
<td>Improved HF-specific QOL</td>
<td>A</td>
</tr>
<tr>
<td>Fontana et al,21 US, E</td>
<td>NRS</td>
<td>CHF, chronic stable, LVEF = 25% –35% (2 unspecified) 65 y</td>
<td>5</td>
<td>Modified TC × 12 wk</td>
<td>↑ Exercise capacity (6 min walk)</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No control</td>
<td>Improved HF-specific QOL</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improved vigor and physical function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good compliance with TC after 3 months</td>
<td></td>
</tr>
<tr>
<td>Zhang and Gao,21 China, C</td>
<td>NRS</td>
<td>“Mal LV function” NOS 6–24 mo TC experience 61 y</td>
<td>13</td>
<td>TC/Qigong (15 style) × 6–12 mo</td>
<td>↓ LVEF</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BP, blood pressure; C, published in Chinese; CAB, coronary artery bypass; CHD, coronary heart disease; CHF, chronic heart failure; DBP, diastolic blood pressure; E, published in English; HR, heart rate; HTN, hypertension; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; OBS, observational, cross-sectional studies, controlled and noncontrolled; NS, non-significant; NRS, prospective nonrandomized intervention studies, controlled and noncontrolled; PEPI, preejection phase; PEP/LVET, corrected for heart rate; QOL, quality of life; RCT, randomized controlled clinical trials; SBP, systolic blood pressure; TC, tai chi.

a Number of study participants included in analyses

b All within-group (TC) pre-/postchanges are significant with \(P \leq .05 \) unless otherwise noted. All results in controlled trials are reported in comparison with the control group(s) and are significant with \(P \leq .05 \) unless otherwise noted.

c Modified Jadad for RCTs (which gives 1 point for proper single-blinding of outcome assessment); ABC Quality Score A, studies in which there appeared to be the least amount of bias and results were likely valid. ABC Quality Score B, studies that appeared susceptible to some bias but not sufficient to invalidate the results. ABC Quality Score C, studies with evidence of significant bias that may invalidate the results.
<table>
<thead>
<tr>
<th>Reference (author, country, language)</th>
<th>Study design</th>
<th>Study population description, mean age</th>
<th>N(^a)</th>
<th>Intervention/control details</th>
<th>Main results(^b)</th>
<th>ABC Quality Score(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones et al.(^{22})</td>
<td>NRS</td>
<td>Community dwellers Heart condition NOS 6%, HTN 16%, stroke 8% 53.5 y</td>
<td>51</td>
<td>Cheng 119 style TC × 12 wk No control</td>
<td>↑ Peak expiratory flow rate ↑ Spinal flexion ↑ Stability ↑ Left shoulder flexion</td>
<td>B</td>
</tr>
<tr>
<td>Kai et al.(^{23})</td>
<td>NRS</td>
<td>Hospital rehabilitation clinic patients CHD 32%, COPD/Chronic bronchitis 79%, Healthy 25% 50–75 y</td>
<td>28</td>
<td>Yang style TC (simplified 24 forms) × 8 mo Usual care</td>
<td>NS trend improved pulmonary function (TVC, TLC)(^d) TVC (P < .001)</td>
<td>B</td>
</tr>
<tr>
<td>Liu et al.(^{24})</td>
<td>NRS</td>
<td>Community dwellers CHD 27%, HTN 13%, Healthy 60% 58 y</td>
<td>55</td>
<td>TC (unspecifed style) × 3 mo No control</td>
<td>↑ SV, TCO, TLC, TSWL, TCWL, TOW, Contractility</td>
<td>C</td>
</tr>
<tr>
<td>Sun et al.(^{25})</td>
<td>NRS</td>
<td>Hospital rehabilitation clinic patients CHD 43%, COPD/Chronic bronchitis 64%, Healthy 14% 64 y</td>
<td>14</td>
<td>Yang Style TC (simplified 24 forms) × 18 mo No control</td>
<td>Improved pulmonary function (TVC, ↑ TVC, ↑ FEV(_1), ↑ TLC)</td>
<td>B</td>
</tr>
<tr>
<td>Zhang and Gao,(^{21})</td>
<td>NRS</td>
<td>Community dwellers with CVD NOS 61 y</td>
<td>34</td>
<td>TC/Qigong (15 style) unspecified duration No prior TC experience No control</td>
<td>Improved "cardiac symptoms," sleep quality, appetite, mood, fatigue</td>
<td>C</td>
</tr>
<tr>
<td>Jones et al.(^{22})</td>
<td>OBS controlled</td>
<td>Community dwellers Heart condition NOS 7%, HTN 14%, stroke 4% diabetes 1% 53.4 y</td>
<td>149</td>
<td>Cheng 119 style TC At least 6-mo experience No TC experience</td>
<td>↑ Spinal flexion ↓ Resting HR ↓ Lower DBP</td>
<td>B</td>
</tr>
<tr>
<td>Yao et al.(^{26})</td>
<td>OBS controlled</td>
<td>Retired elders with and without TC experience Anrythmia 50% 69 y</td>
<td>60</td>
<td>TC (simplified 24, 40, and 48 forms) 2–20 y TC experience No TC experience</td>
<td>↓ Anrythmia Improved HR recovery on stand-up test Improved HR reserve</td>
<td>B</td>
</tr>
<tr>
<td>Liu et al.(^{27})</td>
<td>OBS</td>
<td>TC practitioners CHD 17%, HTN 25%, stroke 8%, COPD 17% 63 y</td>
<td>12</td>
<td>Yang style TC (simplified 24 forms) Mean 10.6 y TC experience No control</td>
<td>Acute ↓ SBP and DBP after TC No change in acute HR</td>
<td>B</td>
</tr>
<tr>
<td>Gong et al.(^{28})</td>
<td>OBS</td>
<td>TC practitioners CHD 33%, HTN 15%, other chronic disease 15%, "healthy" 35% 46–80 y</td>
<td>100</td>
<td>TC (simplified form) 6–30 y TC experience No control</td>
<td>Acute ↑ HR during 20 min TC, returning to rest 6–8 min after exercise, similar changes by age and TC experience No changes in pre-post BP</td>
<td>B</td>
</tr>
<tr>
<td>Chao et al.(^{29})</td>
<td>OBS</td>
<td>TC practitioners CHD 6%, arrhythmia 4%, HTN 32% 60.7 y</td>
<td>47</td>
<td>TC/Qigong (54 movements) Mean 3.6 y TC experience No control</td>
<td>Acute ↑ Thr, TCR, TBP, TVe during 1-h TC Exercise intensity 50%–60% VO(_{2}) max Exercise intensity 10.8 mL/kg/min; 2.6–3.5 METs</td>
<td>A</td>
</tr>
</tbody>
</table>

Abbreviations: C, published in Chinese; CHD, coronary heart disease; CI, cardiac index; CO, cardiac output; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; CW, cardiac work; CWI, cardiac work index; DBP, diastolic blood pressure; E, published in English; FEV\(_1\), forced expiratory volume in 1 second; FVC, forced vital capacity; HR, heart rate; HTN, hypertension; METs, metabolic equivalents; NOS, not otherwise specified; NRS, prospective nonrandomized intervention studies, controlled and noncontrolled; NS, nonsignificant; OBS, observational, cross-sectional studies, controlled and noncontrolled; RR, respiratory rate; SBP, systolic blood pressure; SV, stroke volume; SWI, stroke work index; TC, tai chi; TLC, total lung capacity; VC, vital capacity; Ve, expired ventilation; VO\(_{2}\) max, maximal oxygen uptake.

\(^a\) Number of study participants included in analyses.

\(^b\) All within-group (TC) pre-post changes are significant with P ≤ .05 unless otherwise noted. All results in controlled trials are reported in comparison with the control group(s) and are significant with P ≤ .05 unless otherwise noted.

\(^c\) ABC Quality Score A, studies in which there appeared to be the least amount of bias and results were likely valid. ABC Quality Score B, studies that appeared susceptible to some bias but not sufficient to invalidate the results. ABC Quality Score C, studies with evidence of significant bias that may invalidate the results.

\(^d\) Within-group analysis (no between-group analysis available).
Table 4 • STUDIES EXAMINING TAI CHI IN SUBJECTS WITH HYPERTENSION, DYSLIPIDEMIA, AND IMPAIRED GLUCOSE METABOLISM

<table>
<thead>
<tr>
<th>Reference (author, country, language)</th>
<th>Study design</th>
<th>Study population description, mean age</th>
<th>N*</th>
<th>Intervention/control details</th>
<th>Main results</th>
<th>Modified Jadad; ABC Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young et al.30 US, E RCT</td>
<td>High normal or stage I HTN 67 y</td>
<td>60</td>
<td>Yang style TC (13 movements) × 12 wk Walking/aerobic dance</td>
<td>↓SBP and DBP both groups (between-group P = NS)</td>
<td>No change in exercise capacity</td>
<td>+4 A</td>
</tr>
<tr>
<td>Tsai et al.31 Taiwan, E RCT</td>
<td>High normal or stage I HTN 51 y</td>
<td>76</td>
<td>Yang style TC (108 postures) × 12 wk Usual care</td>
<td>Greater compliance with TC</td>
<td>↓</td>
<td>A</td>
</tr>
<tr>
<td>Thomas et al.32 Hong Kong, E RCT</td>
<td>Elderly HTN 61%, dyslipidemia 59%, impaired glucose tolerance/DM 14%</td>
<td>207</td>
<td>Yang style TC (simplified 24 forms) × 12 wk Strength/flexibility training with Theraband Usual activity</td>
<td>No change in total cholesterol, TG, LDL, HDL</td>
<td>↓</td>
<td>+3 A</td>
</tr>
<tr>
<td>Shen and Su.33 China, C RCT</td>
<td>Essential HTN 64 y</td>
<td>60</td>
<td>TC/Qigong (18 postures; unspecified duration) Medication(^{a}) No treatment</td>
<td>↓SBP and DBP (compared to medication and to no treatment)</td>
<td>+2 C</td>
<td></td>
</tr>
<tr>
<td>Tsang et al.34 and Oor et al.35 Australia, E RCT</td>
<td>Type 2 DM Metabolic syndrome 81%, HTN 76%, dyslipidemia 65%, CHD 34%</td>
<td>38</td>
<td>Yang and Sun style TC (12 movements) Paul Lam’s Tai Chi for Diabetes Program × 16 wk Calisthenics/gentle stretching</td>
<td>No change in insulin resistance or HgbA1c</td>
<td>↓</td>
<td>+4 A</td>
</tr>
<tr>
<td>Wang et al.36 China, C NRS</td>
<td>Essential HTN or high normal (men) 68 y</td>
<td>54</td>
<td>Yang style TC × 3 y No control</td>
<td>↓SBP and DBP</td>
<td>+4 C</td>
<td></td>
</tr>
<tr>
<td>Fang and Wang.37 China, C NRS</td>
<td>Stage I/II HTN Range, 40-70 y</td>
<td>70</td>
<td>Yang style TC (simplified 24 forms) × 12 wk Qigong breathing Medication (Tab Hypotensor = captopril)(^{b}) No treatment</td>
<td>↓SBP and DBP all groups compared to no treatment (between-group P = NS for active interventions)</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Lu et al.38 China, C NRS</td>
<td>HTN 66 y</td>
<td>14</td>
<td>TC (unspeficied style) Qigong/relaxed slow running × 6 mo No control</td>
<td>↓SBP and DBP</td>
<td>↓Pulse pressure, ↓PEP, ↑LVET</td>
<td>B</td>
</tr>
<tr>
<td>Taylor-Piliae et al.39 US, E NRS</td>
<td>At least 1 CVD risk factor HTN 92%, dyslipidemia 49%, DM 21%</td>
<td>38</td>
<td>Yang style TC (24 posture short form) × 12 wk No control</td>
<td>↓SBP and DBP at rest and after step-test</td>
<td>↓</td>
<td>B</td>
</tr>
<tr>
<td>Yeh et al.40 Taiwan, E NRS</td>
<td>Type 2 DM 66 y</td>
<td>32</td>
<td>Cheng TC 37 forms × 12 wk No control</td>
<td>↓HgbA1c</td>
<td>↓</td>
<td>B</td>
</tr>
<tr>
<td>Liu et al.41 China, C OBS</td>
<td>Chronic HTN 66 y</td>
<td>113</td>
<td>TC (unspeficied style; unspecified duration) No TC</td>
<td>↓SBP</td>
<td>NS trend ↓fasting glucose</td>
<td>B</td>
</tr>
</tbody>
</table>

Abbreviations: C, published in Chinese; CHD, coronary heart disease; CI, cardiac index; CO, cardiac output; CVD, cardiovascular disease; DBP, diastolic blood pressure; DM, diabetes mellitus; E, published in English; HDL, high-density lipoprotein; HgbA1c, hemoglobin A1c; HR, heart rate; HTN, hypertension; LDL, low-density lipoprotein; LVET, left ventricular ejection time; NRS, prospective nonrandomized intervention studies, controlled and noncontrolled; NS, nonsignificant; OBS, observational, cross-sectional studies, controlled and noncontrolled; PEP, pre-ejection phase; RCT, randomized controlled clinical trials; SBP, systolic blood pressure; SV, stroke volume; SWI, stroke work index; TC, tai chi; TG, triglycerides.

\(^{a}\)Number of study participants included in analyses.

\(^{b}\)All within-group (TC per/postchanges are significant with P ≤ .05 unless otherwise noted. All results in controlled trials are reported in comparison with the control group(s) and are significant with P ≤ .05 unless otherwise noted.

\(^{c}\)Modified Jadad for RCTs which gives 1 point for proper single-blinding of outcome assessors; ABC Quality Score A, studies in which there appeared to be the least amount of bias and results were likely valid. ABC Quality Score B, studies that appeared susceptible to some bias but not sufficient to invalidate the results. ABC Quality Score C, studies with evidence of significant bias that may invalidate the results.

\(^{d}\)No further details reported.
after exercise, and cardiac hemodynamics such as stroke volume and cardiac output. Two studies included patients with chronic obstructive pulmonary disease and reported improvements in pulmonary function tests (increased vital capacity, total lung capacity, and forced vital capacity) after tai chi (within-group analysis) and compared with usual care.25,26 Three observational studies with heterogeneous cardiovascular populations were designed to examine acute physiological effects and to measure tai chi exercise intensity. These studies report conflicting results with respect to direction of change acutely in HR and blood pressure. No adverse effects were reported.

Studies in Patients With CVDRF (Table 4)

Hypertension

Four RCTs were available that report on blood pressure changes in patients with hypertension.30–33 All 4 studies report a reduction in blood pressure with tai chi (usually a 12-week intervention). In the highest quality of these, Young et al30 compared a light intensity tai chi program that “emphasized physical movements rather than meditational aspects” with moderate-intensity walking and low-impact aerobic dance. They reported comparable blood pressure changes (±SD) in both groups (−7.0 ± 8.8 vs −8.4 ± 8.8 mm Hg systolic blood pressure; −2.4 ± 5.5 vs −3.2 ± 5.5 mm Hg diastolic blood pressure, respectively); however, no difference was found between groups. Of note, they did report higher compliance with home exercise in the tai chi group.

Dyslipidemia

Two RCTs are available that examined changes in lipid profile. Tsai et al31 reported reductions in total cholesterol (−15.2 mg/dL), low-density lipoprotein (−20 mg/dL), triglycerides (−23.8 mg/dL), and increases in high-density lipoprotein (+4.7 mg/dL) after 12 weeks of tai chi in patients with hypertension compared with usual care. However, Thomas et al32 reported no change in these same parameters in a mixed population that included more than half of patients with dyslipidemia. One larger observational trial conducted in China did suggest improvements in lipid parameters with tai chi.41

Impaired glucose metabolism

Two RCTs are available that examined changes in glucose metabolism, suggesting no effect with tai chi.32,34–35 Tsang et al34 reported no change in insulin resistance or sensitivity (0 vs −0.1 homeostasis model assessment index 2 [HOMA2]-insulin resistance and −0.8 vs 5 for HOMA2%-insulin sensitivity), hemoglobin A\textsubscript{1c} (HgbA\textsubscript{1c}) (−0.07% vs 0.12%), or body composition (−0.39 vs −0.07 kg/m2, body mass index) after 16 weeks of tai chi compared with calisthenics and gentle stretching in patients with type 2 diabetes. There was a reduction in body fat in both groups, although there was no difference between groups. Thomas et al32 compared 12 weeks of tai chi with strength and resistance training and with usual care in elders participating with CVDRF. Fasting glucose and HgbA\textsubscript{1c} were reduced in each of the groups (−0.5 vs −0.5 vs −0.3 mmol/L and −0.3% vs −0.3% vs −0.3% in tai chi, resistance training, control groups, respectively), yet there were no differences between groups. Only 14% of this study population had impaired glucose metabolism at baseline. One NRS did suggest modest reductions in HgbA\textsubscript{1c} and reductions in fasting glucose.40

DISCUSSION

The available studies suggest that tai chi exercise may have beneficial effects for patients with cardiovascular conditions and some CVDRF, although the literature to date is limited. Very few studies specifically examine patients with coronary artery disease or heart failure, although the available studies report positive results in both functional and physiological parameters. In investigations of patients with CVDRF, most information is available on blood pressure effects and hypertension. The data on the effect of tai chi on lipids and glucose metabolism are unclear. More than half of the studies in this review were published in Chinese and offer data that have historically been excluded from other reviews.

Clinical Implications and Advantages of Tai Chi

Given the existing evidence, tai chi exercise may be a reasonable adjunct to conventional care. It may be appropriate for those unable or unwilling to engage in other forms of physical activity or as a bridge to more rigorous exercise programs in frail or deconditioned patients. Patients with early detection of CVDRF (eg, borderline hypertension) may be reluctant to begin drug therapy and nonpharmacological approaches are often welcomed. These lifestyle interventions have been recognized as important and effective strategies for primary prevention.42 In addition, patients with either prehypertension or established hypertension, who otherwise feel well, may be less motivated and find it difficult to engage in and maintain a regular exercise regimen. Finding an appropriate, nonthreatening, easy-to-perform activity that patients will maintain is critical to therapeutic success. Clinical trials have reported excellent compliance with tai chi interventions and suggest that
Tai Chi for Cardiovascular Health / 159

tai chi may promote exercise self-efficacy. Likewise, exercise is a well-recognized and effective strategy for secondary prevention in patients with established CVD. Unfortunately, studies have continued to show that conventional cardiac rehabilitation programs are underutilized. Therapies such as tai chi may offer patients additional options, whether as an adjunct to formal cardiac rehabilitation, as a part of maintenance therapy, or as an exercise alternative at any point along this continuum.

Safety

Collectively, these studies suggest that tai chi may be safe for patients with CVD. The 3 studies with high-risk coronary patients reported no adverse effects. In addition, exercise intensity of tai chi can be easily modified. Many studies have reported metabolic equivalents of 1.5 to 4.0 (approximately low-moderate intensity aerobic exercise), which may be a reasonable exercise level for even the more deconditioned cardiac patient.

Study Limitations

The quality of studies within this review varied significantly. Overall, quality was poorer in the Chinese language studies (6/15 vs 0/14 earning a C rating) compared with English language studies. The majority of studies earned a B rating. Since most studies reported positive results, the possibility of publication bias exists. In addition, we were unable to perform meta-analyses due to study heterogeneity (with differences in design, selection of control as well as intervention style, intensity, and dose/duration). There were also inherent limitations in our use of the Jadad scale, given the nature of tai chi trials and the difficulty and impracticality of double blinding. Despite these limitations, this review provides the first comprehensive synthesis of both English and Chinese language literature describing the use of tai chi exercise in cardiovascular populations.

Future Research

There is a clear need for more rigorous research of tai chi for cardiovascular health. However, as with many other mind-body interventions, tai chi is unlike a standardized pharmaceutical and inherently heterogeneous, posing significant challenges to the design and interpretation of studies. The current literature represents a mix of different styles, protocols, intervention dose and duration, emphases (e.g., meditation vs movement), combinations of other activities (e.g., qigong warm-ups), and types or qualifications of instructors. On a further level, tai chi is heterogeneous because it integrates multiple therapeutic components (e.g., musculoskeletal efficiency, breathing, mindfulness, psychosocial interaction, and rituals). For future studies, we will need to better address this heterogeneity and complexity. At the least, we will need larger sample sizes, clear reporting standards so that interventions are well-described and reproducible, and carefully chosen outcome measures that measure both mechanisms of effect and clinical efficacy.

Several trials are currently ongoing, including 2 independent investigator groups studying tai chi for patients with heart failure at Beth Israel Deaconess Medical Center/Harvard Medical School in Boston and the Veterans Research Medical Foundation in San Diego. A preliminary trial of tai chi in obese patients with CVDRF is currently ongoing at Queen’s Medical Center in Honolulu. With these and future thoughtfully designed investigations, we may better understand the benefits, mechanisms, and role of tai chi exercise in the prevention and management of CVD.

Acknowledgment

Dr Yeh was supported by a career development award from NIH NCCAM (K23AT002624).

References

12. Zhang GD, Yao QL, Ge CJ, Zhang MH. Effect of simplified Tai Chi and playing in water on the health of children with abnor-
13. Channer KS, Barrow D, Barrow R. Changes in haemodynamic
parameters following Tai Chi Chuan and aerobic exercise in
14. Lan C, Chen SY. The effect of Tai Chi on cardiorespiratory
429–430.
movement therapy on functional status and exercise capacity
in patients with chronic heart failure: a randomized controlled
17. Yeh GY, Mietus JE, Peng CK. Enhancement of sleep stability
with Tai Chi exercise in chronic heart failure: preliminary find-
ings using an EGG-based spectrogram method. Sleep Med. 2007 [Epub ahead of print].
18. Fontana JA, Colella C, Baas LS, Ghazi F. T’ai Chi Chih as an
and resistance training on cardiovascular risk factors in elderly
Chinese subjects: a 12-month longitudinal, randomized, con-
20. Shih TS, Tsai CC. The effect of Tai Chi on anxiety in patients
on psychological health of patients with chronic heart failure.
movement therapy on functional status and exercise capacity
in patients with chronic heart failure: a randomized controlled
23. Jones AV, Dean E, Scudder RJ. Effectiveness of a community-
24. Chao YF, Chen SY, Lan C, Lai JS. The cardiorespiratory
25. Chao YF, Chen SY, Lan C, Lai JS. The cardiorespiratory
movement therapy on functional status and exercise capacity
in patients with chronic heart failure: a randomized controlled
27. Liu YP, Yang BL, Bai XL. Effects of continuously 24-Form
28. Yao FT, Zhang T, Yao SX. The effect of Tai Chi Quan and Tai
29. Gong LS, Qian JA, Zhang JS, et al. Changes in heart rate and
electrocardiogram during taijiquan exercise: analysis by
Chi Chuan on blood pressure and lipid profile and anxiety sta-
and resistance training on cardiovascular risk factors in elderly
Chinese subjects: a 12-month longitudinal, randomized, con-
32. Shen ZS, Su XH. The effect of Tai Chi Qigong form 18 on
33. Tsang T, Orr R, Lam P, Comino E, Singh MF. Effects of Tai Chi
on glucose homeostasis and insulin sensitivity in older adults
with type 2 diabetes: a randomized double-blind sham-exercisecontrolled trial. Age Ageing. 2007;[Epub ahead of print].
34. Orr R, Tsang T, Lam P, Comino E, Singh MF. Mobility impair-
ment in type 2 diabetes: association with muscle power and
effect of Tai Chi intervention. Diabetes Care. 2006;29:
2120–2122.
35. Wang ZY, Liu DN, Kong DZ. The effect of Tai Chi on lowering
36. Fang Z, Wang ZY. Clinical comparison of simplified Taichiqun, breathing exercise, tab hypotensor (capotroil),
and simple convalescence in treatment of hypertension. J Chin
the therapeutic effect of breathing exercise and shadow box-
ing training on the elderly in the hypertension. J WCIMS.
38. Taylor-Piliae RE, Haskell WL, Froelicher ES. Hemodynamic
responses to a community-based tai chi exercise intervention
in ethnic Chinese adults with cardiovascular disease risk fac-
chi chuan exercise decreases A1c levels along with increase of
regulatory T-cells and decrease of cytotoxic T-cell population in
40. Liu TM, Lin SX. Effect of shadow boxing on the cardiovascular
excitability, adaptability and endurance in middle-aged and
elderly patients with hypertension. Chin J Rehabil Med. 2004;8:
7508–7509.
41. Tejada T, Fornoni A, Lenz O, Materson BJ. Nonpharmacological
42. Morris DS. Tai Chi and older people in the community: a pre-
benefits of Tai Chi practice by older adults. J Gerontol B
44. Jackson L, Leclerc J, Erskine Y, Linden W. Getting the most out
of cardiac rehabilitation: a review of referral and adherence
45. Lan C, Chou SW, Chen SY, Lai JS, Wong MK. The aerobic
capacity and ventilatory efficiency during exercise in Qigong
and Tai Chi Chuan practitioners. Am J Chin Med. 2004;32:
145–150.
46. Lan C, Chou SW, Chen SY, Lai JS, Wong MK. The aerobic
capacity and ventilatory efficiency during exercise in Qigong
and Tai Chi Chuan practitioners. Am J Chin Med. 2004;32:
145–150.