Validation of an ELISA development kit for apolipoprotein B measurement in dried blood spots

Geeta N Eick, Paul Kowal, J Josh Snodgrass
Ischemic Cardiovascular Disease

• Leading cause of death worldwide in both developed and developing countries
• Age-standardized death rates due to ICD have declined steeply since 1980 in developed nations, but rates in Eastern Europe, Central Asia, are increasing
• 90% of ICD cases estimated to be preventable; predicting risk of ICD development therefore critical!
• Primary cause of ICD is atherosclerosis; chronic inflammatory state
Lipoproteins & atherosclerosis
What are Lipoproteins?
Markers of Ischemic Cardiovascular Disease

- Standard markers of CVD:
 - LDL-cholesterol (LDL-C)

- Overwhelming evidence that ApoB is a superior marker of CVD risk

1 copy of ApoB per LDL molecule
Importance of a 1:1 ApoB: LDL molecule ratio

- LDL cholesterol content can vary considerably among individuals with the same LDL particle concentration.
- The higher the actual number of dense LDL particles, the greater the risk of CVD development.
- American Diabetes Association, American College of Cardiology issued a joint consensus statement in 2008 that ApoB be the final test of the effectiveness of any LDL-cholesterol-lowering treatment.
Other advantages of ApoB

- More amenable to standardization than LDL-C measurement
- ApoB standardization has been achieved by an IFCC standardization project
- Almost all ApoB is bound to lipoproteins with no measurable concentration of ApoB in aqueous medium
- Levels of ApoB are not affected by food ingestion, therefore it can be measured in the non-fasting state
Prior DBS assays for ApoB

- Vladutiu et al. 1980 - Electrodiffusion
- Dudman 1985 - Radial immunodiffusion
- Ohta et al., 1988 - ELISA
- Micic et al., 1988 - double rocket immuno-electrophoresis

Cumbersome assays, used antibodies or antisera produced in-house or that are no longer available, or both.
Mabtech ApoB ELISA development kit

- Monoclonal antibody (capture) 20/17
- Biotinylated monoclonal antibody (detection) LDL 11
- Streptavidin-horseradish peroxidase
- *Purified ApoB standard
- Assay range: 8-800 ng/mL
DBS standards & controls

• Purified apoB standard not stable when used to make DBS standards
• Liquichek Lipids Control Level 2
 – ApoA1
 – ApoB
 – HDL cholesterol
 – LDL cholesterol
 – Total cholesterol
 – Triglycerides
Eugene200 validation samples

- Recruited 208 adults from Eugene & Springfield, OR from Nov 2014 - Feb 2015
- Collected matched fingerprick DBS, venous DBS, plasma, buffy coat, & saliva samples
Selected 50/208 samples with vDBS apoB values spanning the range of observed values.

- < 1.04 g/L - low risk coronary artery disease
- 1.22 - 1.4 g/L - high risk
- > 1.4 - very high risk
Stats for ApoB DBS sandwich ELISA

• Intra-assay CV:
 – High control: 1.33%
 – Low control: 1.08%
• Inter-assay CV: 11.2%
• Analytical Sensitivity: 0.02 g/L (n = 12 plates)
No significant difference between vDBS and fDBS ApoB measurements

Deming regression: $y = 1.32x$

- No proportional difference between vDBS and fDBS

95% CI slope: 1.0 - 1.6
Significant linear relationship between fDBS ApoB values & plasma ApoB values

Deming regression: $y = 1.54x + 1.27$
No bias (-0.005) and very few outliers based on Bland-Altman analysis
Linearity

Linearity in acceptable range between 80-120% (but would ideally like between 90-110%)

<table>
<thead>
<tr>
<th>Dilution</th>
<th>vDBS (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>92-109</td>
</tr>
<tr>
<td>1:4</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>98-117</td>
</tr>
<tr>
<td>1:8</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>106-123</td>
</tr>
</tbody>
</table>
Spike & Recovery

<table>
<thead>
<tr>
<th>Sample</th>
<th>Observed (mg/dL)</th>
<th>Expected (mg/dL)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>117.61</td>
<td>113.64</td>
<td>88.0</td>
</tr>
<tr>
<td>#2</td>
<td>128.10</td>
<td>127.64</td>
<td>100.4</td>
</tr>
<tr>
<td>#3</td>
<td>147.9</td>
<td>141.71</td>
<td>104.4</td>
</tr>
<tr>
<td>#4</td>
<td>117.7</td>
<td>119.14</td>
<td>98.8</td>
</tr>
<tr>
<td>#5</td>
<td>102.25</td>
<td>100.6</td>
<td>101.6</td>
</tr>
</tbody>
</table>

DBS matrix does not appear to interfere with analyte recovery.
ApoB concentrations decrease with increasing number of freeze-thaw cycles

% Recovery relative to 1 freeze-thaw cycle

Freeze-thaw cycles
ApoB concentrations decreased at storage temps > -20 °C
Physiological range of hematocrit had no effect on ApoB concentration

<table>
<thead>
<tr>
<th>Hematocrit %</th>
<th>% Recovery (vs. 50% hematocrit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>118%</td>
</tr>
<tr>
<td>40</td>
<td>126%</td>
</tr>
<tr>
<td>60</td>
<td>100%</td>
</tr>
<tr>
<td>80</td>
<td>112%</td>
</tr>
</tbody>
</table>
Limitations

• No “gold standard”
 – Obtained plasma quality controls from Northwest Lipid Metabolism And Diabetes Research Laboratories (repository for WHO/IFCC reference material for apo B)

• Assay involves numerous dilution steps
Conclusions

- DBS-based ELISA assay for ApoB appears promising for population-level research
- Simple to perform, & can stockpile reagents
- Further investigation of assay linearity
- Assess performance with reference laboratory QC standards
Acknowledgements

- Biomarker network meeting organizers
- Liz Thiele

Eugene200 team: Lauren Moore, Melissa Liebert, Theresa Gildner, Josh Shrock, Tyler Barrett, Elisabeth Goldman, Tyler Fording, Devan Compton, Anna Hanson, Micaela Burns, Blanche Blumenthal, Colin Lipps, Robyn Brigham, Haley Brown, Sophie McGinley, Brian McCree, Caroline Porter, Molly Turner, Oliver Wald, Zach Clayton

Funding

- NIH NIA Interagency Agreement YA1323-08-CN-0020
- NIH R01-AG034479
- University of Oregon (Bray Fellowship to JJS)