Linking Biological & Social Pathways to Adolescent Health & Wellbeing

Jodi L. Ford, PhD, RN
Christopher R. Browning, PhD
The Ohio State University

Population Association of America
NIA Biomarker Workshop
Boston, MA
April 30, 2014
Acknowledgements

Funding
National Institutes of Health – NIDA (1R21DA034960-01)
RWJF Nurse Faculty Scholar Program
Ohio State University Institute for Population Research

Collaborators & Consultants
Christopher Browning Raymond Stowe
Donna McCarthy Mark Laudenschlager
Laura Szalacha Narayan Sastry
Add Health saliva collection for cortisol curve (3x/day)
- 25% missing self-report data on timing of collection and only 1/3 fully adhered to collection protocol (Halpern et al. 2012)

Collection of cortisol samples on one day only are common and can capture an acute stress response to a “bad” day versus the intended chronic stress measure

Self-collection of saliva samples and mail return with suboptimal return rates (Sastry & Ghosh-Dastidar, 2011; Halpern et al., 2012)
Aim 1: To field test the collection of biomarkers of stress in adolescents (N=500)
- 1 hair sample and 1 bedtime sample x 6 nights for CORT
- 1 saliva sample for EBV antibody/DNA
- Questions focus on variation in eligibility (insufficient hair, steroidal meds); refusal (hair); missing data (nightly saliva)

Aim 2: To examine the relationships between daily and sociospatial adversity/buffers and (1) cortisol in hair and nightly saliva and (2) EBV antibody/DNA levels in saliva
Cortisol Secretion & Measurement

SALIVA
- Diurnal curve

![Graph showing diurnal curve of saliva cortisol levels]

HAIR
- Hair growth ~ 1 cm/month slightly less for Blacks or African Americans (0.8mm/month)
- Mean monthly or mean w/growth

Higher bedtime levels found for Black or Hispanic youth vs White (DeSantis et al., 2007; Skinner et al., 2013), perceived neighborhood stress among adults (Karb et al., 2012); PTSD s/s youth (Suglia et al., 2010)
Study design

- Large scale, longitudinal (two-wave) probability sample of urban youth ages 11-17 in Franklin County, OH (target N=4000).

Aims

- Focus on effects of sociospatial and institutional exposures on risk behavior (drug use, violence, etc.), victimization/exposure to violence, and mental/physical health
How relevant is the “neighborhood” (e.g., block group, census tract) as an exposure space?

- Activity space – the set of places that individuals come into contact with as a result of their routine activities
 - GPS measured via cell phones
- Survey data
 - Parents/caregivers
 - Youth
- EMA
 - Youth 5 x daily for 1 week

Kwan, 2013
AHDC & Linking Study Design & Data Collection

Entrance Survey
- Main Caregiver & Youth Surveys
- Both: Routine Locations
- Youth: Network Partners

EMA Week
- Youth: Smartphone for 1 week
- EMA: 5 short surveys/day
- GPS Location tracking

Exit Survey
- Youth: Space/Time Diary
- Caregiver: Neighborhood Survey
- Biomarker Collection
AHDC Pilot Study

- **When**
 - Spring-Summer 2013

- **Sample (N=30)**
 - Adolescents ages 11-17
 - Two census tracts (high/low income)
 - Uptake: 100% acceptance rate for biomarker collection
Bedtime Salivary Cortisol Collection

- 97% of nightly saliva samples returned
 - 4 missing of 180 eligible days
 - 3 outliers dropped

- Mean CORT=0.088 mg/dL (range 0.02-0.35)
 - Normal bedtime range 12-18 years (0.0-0.259 mg/dL)
Bedtime Cortisol Variability
Within and Between Individual

- Decomposition of variance for log cortisol:
 - Within individual variance: 0.30
 - Between individual variance: 0.16
 - Intraclass correlation: 0.35

- 65% of variance within individuals
 - Within-individual variability suggests saliva samples taken at different time points rather than right before interviewer arrived
 - Also would expect day-to-day variability with daily activities (McHale et al., 2012) and stressors
Hair Collection for Cortisol

- 90% eligible in pilot – 3 with no or too short hair
 - With R21 we will assess differences between those not eligible and those in the study

- Using thinning shears
 - Protocol developed by Mark Laudenslager

- Anecdotes from the field:
 - Thinning shears improve uptake, especially among females
 - Interviewer training more intensive
 - Steeper learning curve with thinning vs regular shears
Jodi Taking One for the Team: The Cut
Gently pulling cut hair...
Still pulling...
Holding Root End in Fingers – Twisting the Distal End
Ben’s Sample Taped for Storage
Packet for Hair Collection and Storage

HAIR

If hair > 3 cm: cut hair & tape to foil with root end placed by the “root end” sticker. Fold foil & place in tan envelope.

If hair < 3 cm: cut hair into white envelope, empty the hair onto the foil, fold foil & place in tan envelope.
Hair Preparation and Cortisol Assay

Retsch Mixer Mill 200

Hair sample before and after grinding in the MM 200:

Cortisol extraction and assay from hair protocol

Saliva for EBV Antibodies and DNA

- Passive drool saliva collected by interviewer at visit 2

- Assay protocol developed by Raymond Stowe
 - Elisa based method for antibody titers (EBV VCA IgG)
 - No dilution of saliva as in blood
 - PCR for EBV DNA

- Correlation EBV VCA IgG and EBV DNA
 - $r=0.45$ $p=0.014$
Correlations: EBV and Mean Bedtime CORT

<table>
<thead>
<tr>
<th>Entire sample N=29</th>
<th>EBV seropositive sample N=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Bedtime CORT</td>
<td>Mean Bedtime CORT</td>
</tr>
<tr>
<td>EBV VCA IgG</td>
<td>0.12 ((p=0.52))</td>
</tr>
<tr>
<td>EBV DNA</td>
<td>0.36 ((p=0.056))</td>
</tr>
</tbody>
</table>

Pilot currently underway comparing EBV antibodies and DNA in saliva and blood to better tease out infection status and reactivation
Next Steps

- Saliva being collected for future telomere/DNA assay
 - Collaboration with Stacy Drury, PhD at Tulane

- Grant submission for collection of same biomeasures at second wave of AHDC study on the subsample of adolescents in R21 for longitudinal analysis
 - Attempt to capture cortisol curve
 - Additional sample of 500 at second wave to better assess sub-group and within group differences on N=1000
Illustrative Analysis: Activity Space Exposure to Neighborhoods with High Concentrations of Adolescent Males: Implications for Physiological Stress among Urban Adolescent Females

- Adolescent females from the Moving to Opportunity Demonstration (Popkin et al 2010) who lived in high-poverty neighborhoods reported they routinely experienced fear of victimization and harassment by neighborhood males.

- We explore the association between exposure to areas with high concentrations of adolescent males in the daily activity spaces of low-income urban youth, perceived safety & biomeasures of stress (evening cortisol levels), by gender.
Multilevel linear model with days nested within individuals
Multilevel Linear Models (log cortisol by day)

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age^1</td>
<td>-.05</td>
<td>-.04</td>
</tr>
<tr>
<td>Male</td>
<td>-.96</td>
<td>.01</td>
</tr>
<tr>
<td>% spatial concentration of male youth^1</td>
<td>.03</td>
<td>.07*</td>
</tr>
<tr>
<td>% spatial concentration of male youth^1 X male</td>
<td></td>
<td>-.10+</td>
</tr>
<tr>
<td>% daily EMA with parent present^1</td>
<td>-.05</td>
<td>-.05</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.1</td>
<td>-2.9</td>
</tr>
</tbody>
</table>

Further investigation with larger sample, including perceptions of safety as mediator

^1 grand mean centered

* p<.05; + p<.10