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1.  INTRODUCTION
Aging corresponds to the breakdown of cellular and tissue function over time, which is associated 
with increased prevalence of chronic diseases (e.g., neurodegenerative and metabolic disorders, can-
cer), ultimately leading to death. Evidence in invertebrate model organisms and human studies sup-
port the idea that aging is regulated at the genetic level but also by nongenetic factors [1,2]. 
Interestingly, even the lifespan of isogenic individuals reveals large differences between the first and 
last death in controlled environments [3], suggesting that even small environment variations may 
dramatically impact aging and lifespan. A number of environmental modulators of the aging process 
include dietary interventions [4], upregulated stress response [5], physical exercise [6], and circadian 
rhythms [7].

The strictest definition of ‘epigenetics’ only covers phenotypic changes that are heritable through 
generations without underlying changes to the genetic material [8]. However, in the broader defini-
tion, which will be used hereafter, ‘epigenetics’ encompasses alterations at the level of chromatin that 
may play a significant role in regulating gene expression. In eukaryotic cells, chromatin corresponds 
to a nucleoproteic structural polymer, whose basic units are nucleosomes. Nucleosomes are com-
posed of ∼150 bp DNA fragments wrapped around octamers of histone proteins, each unit containing 
two H2A, H2B, H3, and H4 histone proteins, which can be replaced by functional histone variants at 
specific loci (e.g., H2A.Z, H3.3, CENP-A) [9]. Chromatin can be found in two main states: euchro-
matin, a loose compartment permissive to transcription, and heterochromatin, a compact compart-
ment that contains repressed regions of the genome. According to the ‘histone code’ hypothesis, 
combinations of histone posttranslational modifications are thought to modulate the accessibility and 
expression of underlying genes [10]. DNA methylation constitutes another layer of epigenetic regula-
tion, the most well-studied type of which occurs in ‘CpG’ dinucleotides [11]. A final key layer of 
epigenetic regulation is attained through modulation of nucleosome positioning by ATP-dependent 
chromatin remodelers (e.g., SWI/SNF), which impacts regulatory sequence accessibility and higher-
order chromatin compaction [12]. Several classes of noncoding RNAs (i.e., miRNAs, circRNAs, and 
lncRNAs) have been found to be able to modify transcriptional regulation and sometimes impact the 
chromatin landscape [13–15].

Epigenetic alterations are considered one of the hallmarks (pillars) of the aging process [16,17], 
a role supported by many changes to chromatin marks throughout life and by the impact of interfer-
ence with chromatin regulatory complexes on the lifespan of model organisms [18–20,209]. 
Interestingly, accumulating evidence suggests that age-related epigenomic changes may interact 
with other hallmarks of aging, such as genome instability or loss of protein homeostasis [19]. 
Emerging evidence suggests that specific species of these ncRNA may become misregulated with 
aging [22–25] and may even partially drive aging or age-related diseases phenotypes [22,25,26]. In 
this review, we will focus on the potential impact and changes in DNA and histone modifications 
throughout aging.

To this date, most of the knowledge of chromatin regulation remodeling with age has relied on 
global assessment of changes. Only a few studies have attempted to interrogate genome-wide locus-
specific epigenomic changes with aging, with the exception of DNA methylation studies. Understanding 
the global and locus-specific epigenomic changes that accumulate during aging, identifying corre-
sponding molecular regulators of health and lifespan, will be crucial to eventually increase healthy 
youthful years of life, and potentially reverse some aspects of aging.
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2.  EPIGENETIC ALTERATIONS AND THE AGING PROCESS
2.1  THE ‘AGING EPIGENOME’
The pervasiveness of age-related alterations in chromatin regulation across cell types and species is 
now well documented (recently reviewed in Refs. [18–21]). These epigenomic alterations are thought 
to underlie at least in part accompanying alterations in transcription with aging, ultimately impacting 
cell and tissue function. In this chapter, we will focus exclusively on studies of chromatin aging 
throughout organismal lifespan across model organisms (e.g., yeast, worms, flies, mice; Table 1.1).

2.1.1  Histone Deposition and Chromatin Structure in Aging
DNA packaging into higher-order chromatin structure impacts many cellular processes relevant to the 
aging process (e.g., transcription, DNA repair, and DNA replication [27]). Profound changes in global 
chromatin organization and structure have been observed during aging, and these changes have been 
linked to aging phenotypes in model organisms (Table 1.1). Chromatin organization and function can 
be affected by changes in core histone expression, incorporation of functional histone variants, or the 
activity of nucleosome remodelers, which are all relevant to the aging process.

The bulk of core histone expression is restricted to the S-phase of the cell cycle [28], and very little 
de novo synthesis occurs in postmitotic or terminally differentiated cells [29]. The longest-lived pro-
teins in the proteomes of rat brain and liver identified using 15N stable isotope labeling followed by 
mass-spectrometry include a number of canonical and variant histones proteins (e.g., canonical H2A 
and H2A.X), with stability in the order of months [30,31]. Interestingly, core histone protein levels 
decrease during yeast replicative aging [32], and in mammalian models of cellular senescence [33]. 
Muscle stem cells from old mice have lower transcript levels of histone genes [34]. Substantial histone 
reduction modulates genome-wide nucleosomal occupancy and global transcriptional outputs. In yeast, 
decreased histone expression is linked to a decrease in nucleosome occupancy and the aberrant upregu-
lation of corresponding genes [35]. Consistently, reduced amounts of core, linker, and variant histones 
following deletion of the High Mobility Group Box 1 protein gene Hmgb1 in mouse fibroblasts or dele-
tion of its ortholog nhp6 in yeast cells are associated to globally decreased nucleosome occupancy, 
increased chromatin accessibility, and increased transcription [36]. Interestingly, the experimental 
modulation of protein complexes controlling the exchange and deposition of histones into chromatin 
can modulate Saccharomyces cerevisiae lifespan: histone chaperone ASF1, which promotes histone 
deposition and stability, is required for normal replicative lifespan, whereas deletion of the HIR com-
plex, which represses histone expression, increases yeast replicative lifespan [32]. Moreover, overex-
pression of histone H3 and H4, but not histone H2A and H2B, extends yeast replicative lifespan [32]. 
Interestingly, alterations of nucleosome occupancy have been observed in aging liver and may facilitate 
the activation of lipogenesis genes [37]. However, whether the observed remodeling results from 
changes in core histone expression or deposition is unclear. Future studies will need to evaluate whether 
total histone expression levels are a limiting factor in metazoan longevity remains unknown.

A number of histone variants (e.g., H3.3, macroH2A) that can replace canonical histones in the 
chromatin fiber have distinct genomic profiles of incorporation and are thought to have structural or 
regulatory impact [38]. A variant of histone H3, H3.3, has garnered particular interest in the context of 
aging [39]. Interestingly, mass spectrometry analyses have shown that H3.3 is highly enriched for 
‘active’ posttranslational modifications (e.g., H3K4me3, H3K79me2) in drosophila and human cells 
[40,41], suggesting that it may be important for gene expression by modulating chromatin structure or 



Table 1.1 Epigenomic Marks, Chromatin-Modifying Enzymes, and Regulation of Aging

Chromatin 
Modification 
Type Mark Functional Role

Change With 
Organismal Aging

Change Observed in 
Cell Type (Species)

Depositing Enzymatic 
Complex, Wild-Type 
Impact on Lifespan 
(Species)

Removing 
Enzymatic 
Complex, Wild-
Type Impact 
on Lifespan 
(Species) References

DNA 
methylation

5-mC Transcriptional 
repression (?)

Minor global increase,
Local increases and 
some local decreases
Local increases and 
some local decreases
Increase (LINEs), local 
decreases and rare local 
increases
No global change

HSCs (Mus musculus)
Small intestine, colon, 
lung, liver, spleen, brain, 
blood, kidney, muscle, 
pancreatic beta-cells 
(Homo sapiens, M. 
musculus)
Sperm (H. sapiens)
Cortex, hippocampus (H. 
sapiens, M. musculus)

dDNMT2 
(?) + (Drosophila 
melanogaster)

N/A [48,115,116,159, 
189–195]

5-hmC Transcriptional 
activation (?)

Minor increase
(SINEs, LTRs)
(Minor) global decrease
No global change or 
increase

Cerebellum (M. 
musculus)
HSCs, Liver, T-cells, 
PBMCs (M. musculus. 
H. sapiens)
Hippocampus (M. 
musculus)

N/A N/A [115,159,195–199]

Histone 
methylation

H3K9me2 Transcriptional 
repression

Decrease Whole male flies (D. 
melanogaster)

N/A N/A [200]

H3K9me3 Transcriptional 
silencing

Increase, remodeling
Increase
No global change
Decrease

Head (D. melanogaster)
Hippocampus (M. 
musculus)
Cerebellum (M. 
musculus)
Fibroblasts, Soma (H. 
sapiens, C. elegans)

N/A JMJD-2 −/= 
(Caenorhabditis 
elegans)
KDM4A −/= (D. 
melanogaster)

[201–205]

H3K27me3 Transcriptional 
repression

Decrease
Increase, remodeling

Soma (C. elegans)
Brain, MuSCs, HSCs 
(Nothobranchius furzeri, 
M. musculus)

E(Z)−(D. 
melanogaster)
MES-2−(C. elegans)
(Polycomb complex)

UTX-1−(C. 
elegans)
JMJD-1.2 + (C. 
elegans)
JMJD-3.1 + (C. 
elegans)

[34,115,204,206–211]

H4K20me3 Pericentric 
heterochromatin

Increase Liver, kidney (Rattus 
norvegicus)

N/A N/A [212]

 
 

 
 

 



H3K4me2 Transcriptional 
activation

Global increase, 
remodeling

Cortex (Macaca mulatta) SET-9−(C. elegans)
SET-26−(C. elegans)

T08D10.2−(C. 
elegans)
SPR-5−(C. 
elegans)

[55,204,206,213–216]

H3K4me3 Transcriptional 
activation

No change
Decrease, remodeling
Minor global increase, 
remodeling

Soma (C. elegans)
Head (D. melanogaster)
Neurons, HSCs,
Muscle stem cells (H. 
sapiens,
M. musculus)

SET1 + (Saccharomyces 
cerevisiae)
ASH-2−(C. elegans)
SET-2−(C. elegans)
WDR-5−(C. elegans)
(COMPASS complex)

RBR-2 ± (C. 
elegans)
LID +/= (D. 
melanogaster)

[34,115,118,119,201, 
204,206,215,217–220]

H3K36me3 Transcriptional 
elongation

No global change,
Remodeling
Minor global decrease, 
remodeling

Yeast cells (S. cerevisiae)
Soma, Head (C. elegans, 
D. melanogaster)

SET2 ± (S. cerevisiae)
MET-1 + (C. elegans)

RPH1−(S. 
cerevisiae)

[78,79,201,204,217]

Histone 
acetylation

H3K56ac DNA replication 
and DNA-
damage response

Decrease Yeast cells (S. cerevisiae) N/A SIRT6 + (M. 
musculus)

[64,90,152,221,222]

H3K14ac Transcriptional 
activation

N/A N/A GCN5 + (S. cerevisiae)
(SAGA complex)
IKI3 −/= (S. cerevisiae,
D. melanogaster,
C. elegans)
SAS3 −/= (S. 
cerevisiae,
D. melanogaster,
C. elegans)

SIR2 +/= (S. 
cerevisiae)
SIR2.1 +/= (C. 
elegans?)
dSIR2 +/= (D. 
melanogaster ?)
SIRT1+/= (M. 
musculus)

[62,63,147,223–233]

H3K9ac Transcriptional 
activation

N/A N/A IKI3 −/= (S. cerevisiae,
D. melanogaster,
C. elegans)
SAS3 −/= (S. 
cerevisiae,
D. melanogaster,
C. elegans)

SIR2 +/= (S. 
cerevisiae)
SIR2.1 +/= (C. 
elegans?)
dSIR2 +/= (D. 
melanogaster ?)
SIRT1+/= (M. 
musculus)
SIRT6 + (M. 
musculus)

[62,63,90,147,152, 
221–233]

H3K18ac Transcriptional 
activation

N/A N/A IKI3 −/= (S. cerevisiae,
D. melanogaster,
C. elegans)
SAS3 −/= (S. 
cerevisiae,
D. melanogaster,
C. elegans)

N/A [224]

continued

 
 

 
 

 



Table 1.1 Epigenomic Marks, Chromatin-Modifying Enzymes, and Regulation of Aging—cont’d

Chromatin 
Modification 
Type Mark Functional Role

Change With 
Organismal Aging

Change Observed in 
Cell Type (Species)

Depositing Enzymatic 
Complex, Wild-Type 
Impact on Lifespan 
(Species)

Removing 
Enzymatic 
Complex, Wild-
Type Impact 
on Lifespan 
(Species) References

H4K16ac Chromatin
Compaction 
regulation

Increase
Decrease

Yeast cells (S. cerevisiae)
Liver, kidney (H. sapi-
ens, M. musculus)

SAS2, -, S. cerevisiae SIR2 + (S. 
cerevisiae)
SIR2.1 +/= (C. 
elegans)
dSIR2 +/= (D. 
melanogaster)
SIRT1+ (M. 
musculus)

[62–64,147,223,224, 
229–233]

H4K12ac Transcriptional 
elongation

Decrease
Upon contextual fear 
conditioning

Hippocampus  
(M. musculus)

N/A RPD3−(S. 
cerevisiae,
D. 
melanogaster)

[143,234–236]

H4K5ac Transcriptional 
activation?

CBP + (C. elegans) RPD3−(S. 
cerevisiae,
D. 
melanogaster)

[234–237]

Other 
chromatin 
modification

H2BK123Ub Transcriptional 
activation?

RAD6 + (S. cerevisiae)
BRE1 + (S. cerevisiae)
(H2B ubiquitination 
complex)

N/A [238,239]

Histone 
expression

H2Aa Core histone Decrease Yeast cells (S. cerevisiae) = (S. cerevisiae) N/A [32]

H2A.1 Canonical 
histone

Decrease
No change

Cortical neurons (R. 
norvegicus)
Heart, liver, kidney 
(Gallus gallus)

N/A N/A [44]

H2A.2 Canonical 
histone

Increase
No change

Cortical neurons (R. 
norvegicus)
Heart, liver, kidney (G. 
gallus)

N/A N/A [44]

 
 

 
 

 



H2A.X Histone variant Increase Cortical neurons (R. 
norvegicus)

N/A N/A [44]

H2A.Z Histone variant No change Cortical neurons (R. 
norvegicus)

N/A N/A [44]

macroH2A Histone variant, 
heterochromatin

Increase Lung, liver (M. 
musculus)

N/A N/A [240]

H2Ba Core histone Decrease MuSCs (M. musculus) = (S. cerevisiae) N/A [32,34]

H3a Core histone Decrease, occupancy 
changes
Decrease
No Change

Yeast cells (S. cerevisiae)
Soma, Whole male flies, 
MuSCs, (C. elegans, 
D. melanogaster, M. 
musculus)
Head (D. melanogaster)

+ (S. cerevisiae) N/A [32,34,200,201,204, 
241]

H3.1/2 Canonical 
histone

Decrease Cortical neurons (R. 
norvegicus)

N/A N/A [44]

H3.3 Active and telo-
meric chromatin

Increase Quiescent T lympho-
cytes, heart, liver, kidney, 
cortical neurons (H. 
sapiens, G. gallus, R. 
norvegicus)

+ (C. elegans) N/A [42–45]

H4 Core histone + (S. cerevisiae) N/A [32]

Chromatin 
structure/
accessibility

Remodeling Liver (M. musculus) ISW2−(S. cerevisiae,  
C. elegans)
(ISWI complex)

N/A [37,47]

SWI/SNF + (C. elegans) N/A [46]

CHD1−(S. cerevisiae) N/A [47]

LET-418−(C. elegans)
dMI2−(D. 
melanogaster)
(NurD complex)

N/A [242]

HSCs, hematopoeitic stem cells; PBMCs, peripheral blood mononuclear cells; MUSCs, muscle stem cells; LTRs, long-terminal reports; LINEs, long-interspersed nuclear elements; SINEs, short-
interspersed nuclear elements.
Note that only chromatin changes occurring during physiological organismal aging are reported in this table.
aReported studies of core histone changes noted assessed all variants of a particular histone family together; ? indicates where the parameter is unknown or unconfirmed. The wild-type impact on 
health or lifespan corresponds to the role of the enzymatic complex on lifespan in physiological conditions based on experimental knock-down, mutation, or overexpression results (‘−’ to indicate that 
they normally restrict health or lifespan, ‘+’ to indicate that they normally promote health/lifespan, ‘=’ when no clear impact on lifespan was reported).
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function. Consistent with its expression being cell cycle independent (unlike its canonical counter-
parts), the H3.3 histone variant progressively accumulates with age in cells and tissues from 
Caenorhabditis elegans [42], chicken [43], rat [44], and human [45] (Table 1.1). The age-associated 
accumulation of H3.3 may lead to the incorporation of the variant into nucleosomes at aberrant loci and 
impact heterochromatin maintenance or gene expression during aging [39]. Interestingly, a recent study 
suggests that H3.3 accumulation improves stress resistance and is required for longevity mediated by 
the Insulin-FOXO signaling pathway in C. elegans [42]. The role, if any, of histone variants during 
human aging deserves further investigation.

ATP-dependent chromatin remodelers may also influence nucleosome positioning, higher-order 
chromatin structure and overall nuclear organization [12], and may impact organismal lifespan (Table 
1.1). For instance, the SWI/SNF complex is required for longevity promotion by the Insulin-FOXO 
pathway in C. elegans [46]. Disruption of the ISWI complex extends S. cerevisiae and C. elegans lon-
gevity [47]. In addition to increased replicative lifespan, yeast that lack ISW2, a gene encoding a sub-
unit of the ISWI complex, also display shifts in nucleosome positioning at thousands of stress-response 
genes [47]. Although these studies support the notion that chromatin remodelers can impact metazoan 
aging, their importance in the physiological regulation of aging is still unclear.

2.1.2  DNA Methylation
Another core mode of epigenomic regulation is attained through direct modification of the DNA mole-
cule, such as DNA methylation. Many studies have focused on methylation of DNA on carbon 5 of 
Cytosines (i.e., 5-methylcytosine, or 5-mC) in ‘CpG’ dinucleotides (cytosine followed by guanine in the 
5′ → 3′ direction; see Glossary), which is usually associated with heterochromatin and gene repression 
[11]. While 5-mC is the best studied form of DNA methylation, other types of DNA methylation have 
been described, such as cytosine methylation at non-CpG dinucleotides [48], 5-hydroxymethylcytosine 
(5-hmC) [48], and, more recently, N6-methylation of adenines (6-mA) [49–51]. Interestingly, human 
studies suggest that 5-mC DNA methylation can reflect chronological age, or to some extent ‘biological’ 
age, and DNA methylation profiles can be used to build a molecular ‘aging clock’ [52–54]. The precise 
impact of CpG methylation on longevity remains an open question [21]. Interestingly, recent work has 
suggested that DAMT-1, the putative 6-mA DNA methyltransferase in C. elegans, is involved in a para-
digm of transgenerational inheritance of lifespan extension [55]. Thus, determining the biological sig-
nificance and functional relevance of DNA methylation in mammalian aging will require further study.

2.1.3  Posttranslation Modifications of Histone Proteins
Histone proteins are subject to extensive posttranslational modifications, which associate differential 
accessibility and expression of underlying genes [10,56]. Some histone marks, such as H3K4me3 or 
H3K36me3, have been associated to an active or open chromatin environment, whereas other marks, 
such as H3K9me3 or H3K27me3, are linked to regions of repressed chromatin [56]. Extensive changes 
in global levels of specific posttranslational histone modification have been reported across cell types 
and species (Table 1.1) and underlie the proposed status of epigenetic alterations as hallmarks or pillars 
of aging [16,17].

It is interesting to note that opposing trends with aging have been observed for the same histone 
modification (e.g., H3K27me3) depending on the cell type, or species under study (Table 1.1). 
Consistently, chromatin-modifying enzymes with the same activity (e.g., H3K27me3 demethylases 
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UTX-1 vs. JMJD-2) have been observed to have opposing effects on lifespan. These apparently contra-
dicting results suggest that, rather than the global assessment of changes, measuring changes at specific 
loci targeted by specific enzymes may be more relevant to understand the epigenomic changes associ-
ated with aging and longevity. Thus, it will be crucial to investigate genome-wide patterns of epig-
enomic changes with age in specific cell types to understand the biological significance of the aging 
epigenome (see Section 4).

2.2  IMPACT OF ENVIRONMENTAL STIMULI ON THE AGING EPIGENOME
Nongenetic or environmental factors, such as dietary intake, physical exercise, or circadian rhythms, 
can influence aging and longevity dramatically [4,7]. Although causal evidence linking the environ-
mental cues to aging and longevity through specific chromatin changes is still missing, emerging evi-
dence suggests that these factors can also impact the chromatin landscape [21].

Modulation of nutrient intake is an environmental cue whose impact on aging and longevity has 
been extensively studied. Indeed, dietary restriction (DR), which corresponds to a reduced dietary 
intake without malnutrition, has been associated to longevity and to decreased signs of aging across 
many organisms [4]. DR induces profound changes in gene expression across tissues and cell types and 
can also impact the chromatin landscape [57,58]. For instance, thousands of nucleosomes are reposi-
tioned upon DR in yeast [47], and shifted positions partially overlap with nucleosomes that are remod-
eled in the long-lived ISW2 deletion mutant [47]. DR was also associated to a delay in the age-linked 
loss of facultative heterochromatin in Drosophila [59]. Interestingly, high body mass index (suggestive 
of high food intake), results in ‘older’ DNA methylation profiles in human liver [60]. The Class III 
NAD-dependent histone deacetylases sirtuins are important mediators of DR-induced longevity across 
species [61–63]. Interestingly, the impact of yeast sirtuin SIR2 on lifespan requires intact H4K16, 
SIR2’s target deacetylation residue [64]. Interestingly, modulation of nutrient intake may also lead to 
epigenetic transmission of longevity phenotype in its strictest definition. Indeed, worms whose grand-
parents were starved display a 22% to 70% increase in organismal lifespan compared to the control 
worm group up to the third generation [65]. Though its final impact on aging and longevity is unclear, 
the transgenerational epigenetic inheritance of metabolic states has also been described in mammals 
[66]. Thus, nutrient intake modulation has important ties to the regulation of both longevity and chro-
matin states.

3.  SIGNIFICANCE OF THE AGING EPIGENOME
Though it is clear that many epigenomic changes occur with aging, how these changes may ultimately 
impact the tissue and cell biology is less clear. Because of the potential role of chromatin as a regulatory 
platform, age-related epigenomic changes may foster biological instability. First, changes to the chro-
matin landscape throughout life may lead to decreased transcriptional precision and decreased cell and 
tissue function. Second, accumulating evidence suggests that the chromatin landscape is key to pro-
mote genome stability, a feature that may be impacted by age-related epigenomic remodeling. Thus, 
‘epimutations’ (i.e., aberrant or atypical changes in epigenetic states), which seem to increase stochas-
tically with age [67,68], may themselves promote further genomic instability.
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3.1  AGE-RELATED LOSS OF TRANSCRIPTIONAL PRECISION
Many age-related changes in gene expression have been described across cell types and species [69,70], 
and stereotypical epigenomic changes accumulated throughout life may drive the aging transcripome 
at least partly. Other aspects of transcription may also be regulated by the chromatin landscape (e.g., 
pre-mRNA splicing and H3K36me3) [71]. In addition to transcriptional levels, age-related remodeling 
of cellular epigenomes could also adversely impact other aspects of transcription precision. The result-
ing loss of robustness of transcriptional networks may be responsible, at least in part, for the functional 
decline that is also associated with aging.

The robustness and integrity of transcriptional networks has been observed to decay during aging in 
C. elegans [72] and in mice tissues [73,74]. Whether aging is also associated to increased cell-to-cell 
transcriptional noise, another aspect of transcription precision, is still an open question. Indeed, whereas 
increased transcriptional noise has been observed for 11/15 tested genes in cardiomyocytes with aging 
[75], there were no detectable changes in transcriptional noise in hematopoeitic stem cells (HSCs) from 
old mice for any of the six assayed genes [76]. It is important to note that, because of technical limita-
tions, these pioneering studies were limited to few genes and cell types. Recent advances in single-cell 
profiling techniques [77] now allow high-resolution genome-wide analyses of single-cell transcription 
across diverse cell types and will be key to understand the significance of transcriptional noise regula-
tion during aging.

Age-dependent changes in chromatin modification may impact the aspects of transcriptional preci-
sion. Recent studies support an important function for the H3K36me3 mark in promoting transcrip-
tional precision during the aging process. Sustained H3K36me3 levels throughout life leads to decreased 
gene expression fluctuations with age and promotes C. elegans longevity [78]. Similarly during yeast 
aging, loss of H3K36me3 levels is associated to increased cryptic transcription, and deletion of the 
H3K36me3 demethylase gene Rph1 leads to extended lifespan [79]. Other chromatin features or regu-
lators, such as HDACs [80] or changes in H3K4me3 breadth [81] may also influence specific aspects 
of transcriptional precision. Interestingly, C. elegans individuals treated with mianserin or carrying the 
longevity promoting daf-2 mutation (i.e., with activated insulin/FOXO signaling pathway) display both 
a suppression of transcriptional drift with aging and increased lifespan [82]. Further work will be 
needed to disentangle the relationship between chromatin and transcriptional precision during aging.

3.2  LINKS BETWEEN EPIGENETIC AND GENOMIC INSTABILITY WITH AGE
Emerging evidence suggests that accumulated errors in DNA repair and genome replication may par-
tially drive the age-related accumulation of mutations but also that of ‘epimutations’ [83,84]. Indeed, 
aging is accompanied by a progressive failure of DNA repair pathways [85], which may result from a 
growing burden of genomic instability events (e.g., single nucleotide mutations, aneuploidy, transposon 
insertions) [83]. Though it is unclear whether increased DNA repair activity is protective against aging 
phenotypes, an important role for DNA damage reparation during aging is supported by the progeroid 
phenotype associated to mutations in genes encoding the DNA repair machinery [86]. Aging is also 
associated to elevated levels of persistent DNA-damage signaling [68,84], which can foster local 
changes in chromatin structure and epigenetic modifications [84,87]. DNA-damage signaling can pro-
mote the recruitment of chromatin-modifying enzymes (e.g., SIRT1, SIRT6, Polycomb repressor com-
plex) to repair sites [84]. The SIRT1 and SIRT6 enzymes are thought to locally promote genomic 
stability and telomere integrity [88–91].
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In eukaryotes, endogenous mobile genetic elements, or ‘transposable elements’ (TEs) represent 
30%–80% of the genome [92], which usually heterochromatinized in young healthy cells [93]. TE 
activity leads to extensive genomic instability [94]. Interestingly, increased TE activity has been 
reported in several species with age [94–100] and is associated with neurodegenerative diseases in 
humans [101]. Conversely, DR is associated to an attenuation of age-related TE derepression in the 
liver and skeletal muscle of aged mice [98] and in Drosophila [100]. TE derepression is thought to 
result at least partly from age-related heterochromatin loss, and sirtuin SIRT6 could play an important 
role in this process, since its activation leads to enhanced heterochromatin and transcriptional repres-
sion in fibroblasts, heart, liver, and brain from young mice [99]. Accumulating evidence supports the 
idea that TE activation has a deleterious impact on organismal lifespan. Flies that lack the Argonaute 
gene Ago2 exhibit exacerbated transposition and a shortened lifespan [97], whereas flies with addi-
tional copies of the Dicer2 or Su(var)3–9 genes display sustained repression of TEs throughout life and 
extended longevity [100]. Thus, aberrant chromatin remodeling may underlie increased transposition 
during aging and ultimately promote age-related dysfunction.

4.  THE POWER OF GENOMICS: GLOBAL VERSUS GENOME-WIDE LOCUS-
SPECIFIC AGE-RELATED CHANGES

In eukaryotes, regulation of gene expression occurs at multiple levels resulting from a complex interac-
tion between noncoding cis-acting sequences (e.g., enhancers) and transcription factors (TFs) that 
together determine if a particular gene will be active or silent. Growing evidence indicates that chroma-
tin modifications and organization (i.e., the epigenome) play a critical role in regulating gene expres-
sion at multiple layers [102–104], such as by facilitating or preventing the access of TFs to regulatory 
sites and by organizing three-dimensional (3D) genome structure. Disruption of the epigenomic land-
scape—chromatin accessibility and structure—triggers failures in precise transcriptional regulatory 
programs and ultimately leads to cellular dysfunction and pathologies [105]. As outlined previously, 
aging impacts various features of the chromatin, including chromatin accessibility and interactions 
[27]. However, very little is known about which specific loci of the mammalian (or human) genome go 
through chromatin changes with aging. To date, most studies focused on assessing the aging-related 
epigenomic changes at the global level, mostly by profiling histone modification levels using global 
quantification methods such as Western blotting or mass spectrometry (reviewed in Ref. [21]). Although 
informative these studies failed to capture which genomic loci undergo epigenomic changes with aging 
(i.e., locus-specific changes). To precisely uncover these changes, epigenomes of many mammalian 
cell types have yet to be profiled and compared across young and elderly samples. Profiling these cells 
and uncovering aging-related epigenomic changes genome-wide will give us an opportunity to describe 
transcriptional programs that are activated or repressed with aging in diverse cell types and tissues.

4.1  DNA-METHYLATION PROFILING IN AGED HUMAN CELLS
Previous studies using DNA methylation microarrays measured the methylation status across a large 
set of CpG sites in blood cells and revealed aging-induced methylation changes in human immune cells 
[106–109], which may be linked to immune function declines and even disease incidence and mortality 
[110]. Moreover, it has been shown that aging-associated methylation patterns take place prematurely 
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in certain diseases, such as Down’s syndrome [111] and HIV [112]. Although leading to highly predic-
tive computational models, these assays do not provide a genome-wide view of epigenomic changes 
since they only profile the methylation status of the probes available on the microarrays and cannot 
uncover the full complexity of genome-wide epigenetic landscapes [113]. More recent technologies, 
such as whole genome bisulfite sequencing or the more targeted reduced representation bisulfite 
sequencing [114] will likely deepen our understanding of genome-wide 5-mC DNA methylation 
changes and the biological significance of these changes throughout lifespan.

4.2  LESSONS FROM GENOME-WIDE PROFILING OF CHROMATIN LANDSCAPE WITH 
AGING

To date, only a handful studies have profiled and compared histone modification and/or chromatin land-
scapes genome-wide in mammalian cells with aging. Among these, several studies reported genome-
wide histone modification changes in purified mouse cells with aging. Liu et al. [34] isolated quiescent 
and activated skeletal adult muscle stem cells, also known as satellite cells, (i.e., qMuSCs and aMuSCs) 
from young and old mice to assess gene expression profiles, as well as H3K4me3, H3K27me3, and 
H3K36me3 genomic patterns. Interestingly, aging of qMuSCs was associated with the accumulation of 
repressed chromatin domains, potentially explaining their functional decline with age. In another study, 
Sun et al. [115] studied aging-associated changes in gene expression, DNA methylation, and histone 
modifications (i.e., H3K4me3, H3K27me3, and H3K36me3) in purified mouse adult HSCs. They 
observed an increase in the number of loci marked with H3K4me3 (i.e., H3K4me3 peaks), especially 
encompassing gene promoters associated with HSC identity and self-renewal, suggesting that these 
aging-related epigenetic changes may contribute to increased stem cell self-renewal and decreased dif-
ferentiation ability with aging. In a recent study, Avrahami et al. [116] profiled gene expression, DNA 
methylation, and several histone modification marks (e.g., H3K4me1, H3K27ac) in fluorescence- 
activated cell sorting (FACS)–purified pancreatic β-cells in young (4–6 weeks) and old (16–20 months) 
mice. They observed a global drift in DNA methylation in aged cells, with highly differential methylated 
regions becoming more ‘leveled’ with age (i.e., displaying less extreme differences). Surprisingly, the 
genome-wide analysis also revealed an upregulation of key pancreatic islet TFs Pdx1 and NeuroD1 with 
aging, suggesting that aging is not always coupled with a functional decline in mammalian cells [116].

A major hurdle in analyzing genome-wide changes in chromatin profiles during aging is the ability 
to profile epigenomes of low cell numbers. To address this challenge, Zheng et al. [117] recently devel-
oped novel Chromatin Immunoprecipitation followed by high-throughput sequencing (i.e., ChIP-seq) 
based assays that allow sensitive profiling of histone modification marks from as few as 500 cells with-
out increasing polymerase chain reaction amplification cycles (i.e., ‘Recovery via protection ChIP’ or 
‘RP-ChIP-seq’ and ‘Favored Amplification RP-ChIP-seq’ or ‘FARP-ChIP-seq’). The authors took 
advantage of RP-ChIP to map H3K4me3 from single lenses dissected from young (30-day-old) and old 
(>800-day-old) mice. They identified 613 gene promoters that exhibit age-related changes in H3K4me3 
levels [117]. Interestingly, a significant aging-related increase in H3K4me3 peak height and width was 
observed in two loci associated with cataract [117]. Moving past age-related changes in histone modi-
fications, Bochkis et al. [37] profiled gene expression, nucleosome occupancy profiles, as well as TF 
Foxa2 and histone deacetylase Hdac3 in liver samples of young (3 months) and old (21 months) mice. 
They observed that regions that lose nucleosome occupancy with aging are enriched in putative 
Forkhead DNA-binding motifs, which is consistent with the increase binding in Forkhead factor Foxa2 
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that they observed at these sites with age [37]. Genome-wide binding patterns of Foxa2 and Hdac3 dur-
ing aging provided a potential mechanistic explanation for gene expression alterations that lead to age-
associated liver steatosis (i.e., fatty liver disease) [37].

Though patterns of DNA methylation with aging have been relatively well studied in humans, few 
studies have investigated changes in histone modifications with human aging. A series of studies in 
particular have investigated changes in the chromatin of neuronal and nonneuronal nuclei collected 
from postmortem human prefrontal cortex samples. In a pioneering 2010 study, Cheung et al. [118] 
profiled H3K4me3 histone mark in prefrontal cortex cells from 11 postmortem individuals’ ages rang-
ing from 0.5 to 69 years. Though they observed developmental decrease in H3K4me3 levels at approxi-
mately 600 developmental gene promoters during the first year after birth, remodeling in the H3K4me3 
profiles was less extensive in the elderly (>60 years) prefrontal cortex neuron samples. In a follow-up 
study, they increased the cohort size to 36 human prefrontal cortex specimens (ages from 34 gestational 
week to 81 years old) and identified 1157 genomic loci that show developmental changes in H3K4me3 
intensity levels [119]. In agreement with their previous study, most of these changes were defined by a 
rapid gain or loss of the H3K4me3 mark during the late prenatal period and the first year after birth. 
They observed slower changes during early and later childhood and minimal changes in adulthood.

Together, these studies reveal the power of genome-wide mapping of histone modification marks 
and chromatin states to uncover age-related epigenome remodeling in mammalian cells and to under-
stand biological significance and implications of these remodeling events.

4.3  ADVANCES IN EPIGENOME PROFILING IN HUMAN CELLS
Until recently, a major obstacle in front of profiling young and aged human cells have been the abun-
dant input material required by existing protocols for genome-wide epigenome profiling. For example, 
chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) is a technology 
that produces high resolution, genome-wide profiles of histone marks and DNA–protein interactions. 
However, standard protocols require abundant starting material (>1 million cells). This barrier has been 
particularly difficult to overcome in clinical samples, owing to challenges in obtaining the cell numbers 
necessary for high data quality with these experiments.

In recent years, mainly driven by big consortia efforts, vast amounts of epigenomic data have been 
generated in human cell lines and primary cell types. The ENCODE [103] and Roadmap Epigenomics 
[104] consortia provided the research community with reference epigenomes (histone modifications, 
chromatin interactions, chromatin accessibility, and DNA methylation profiles) as well as computation-
ally inferred functional annotations (e.g., enhancers, insulators) in 111 human cell lines and types 
[120–123]. These reference epigenomes have revolutionized our understanding of transcriptional pro-
grams in human cells by providing multifaceted and genome-wide epigenomic data along with experi-
mental and computational advances in generating and analyzing genomic data. Notably, analyses of 
these reference epigenomes have revealed the importance of noncoding regulatory elements for gov-
erning cell-specific functions and how the functions of these elements become disrupted in human 
pathologies. Preliminary studies suggest that aging is also associated with epigenomic changes that 
reside in noncoding enhancer sequences, likely altering gene regulation programs and not gene 
sequences themselves. Recent advances in epigenome profiling techniques enable generating various 
genomic maps from small cell numbers (e.g., clinical samples) and even from single cells. These pow-
erful breakthroughs will help us precisely define aging-associated epigenomic changes at coding and 
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noncoding loci in diverse human cells and uncover their implications for transcriptional regulatory 
programs. Among the recent advances in epigenome profiling, The Assay for Transposase Accessible 
Chromatin (ATAC-seq) technology was developed to interrogate chromatin accessibility from small 
cell numbers [124,125], and even from single cells [125,126]. ATAC-seq surmounted a major technical 
barrier and enabled profiling chromatin accessibility of clinical samples with high accuracy and repro-
ducibility [127–129]. Application of this recent technology on human cells of young and elderly indi-
viduals hold the promise to uncover which regions of the human genome is going through chromatin 
accessibility changes with aging, and what are the implications of these changes on cell functions.

Other chromatin features also change with aging including the chromatin structure and interactions 
[27]. Advances in genomic technologies have revealed information regarding 3D chromatin conforma-
tion and have shown that many regulatory elements that are distal on the linear genome map are actually 
in close physical proximity with each other as a result of the 3D chromatin structure. Current technolo-
gies for capturing this 3D structure and chromatin interactions between active regulatory elements 
include Chromosome Conformation Capture–based methods (3C) [130], 4C [131], 5C [132], Hi-C 
[133], and Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) [134]. Among 
these methods, ChIA-PET technology genome-wide maps long-range interactions mediated by a pro-
tein, such as promoter-enhancer interactions mediated by RNA polymerase 2 (Pol2)—an information 
essential to understand gene regulatory programs [134]. However, a major drawback of ChIA-PET in the 
context of aging epigenomics is its requirement for very high cell numbers (∼100 million cells). A recent 
technology, namely Hi-CHIP [135], has increased the sensitivity of chromatin interaction profiling while 
lowering the required cell numbers. With Hi-CHIP, protein-mediated chromatin interactions can be cap-
tured from as little as 1 million cells, which is a 100-fold improvement over the ChIA-PET technology.

Reference epigenomes in human and mouse cells and tissues have transformed our ability to under-
stand transcriptional regulation and highlighted the key differences in chromatin states between healthy 
young tissues. The recent advances in profiling the chromatin accessibility and chromatin structure will 
accelerate our ability to map and contrast the epigenomes of young and aged cells. These epigenomic 
profiles hold the key to uncovering how transcriptional programs are established in diverse human 
cells, and how they are disrupted throughout aging.

5.  EMERGING CHALLENGES IN THE FIELD OF AGING EPIGENOMICS
In spite of our growing understanding of the role of chromatin in aging and technical progress in our abil-
ity to map the remodeling of many aspects of the chromatin landscape, a number of outstanding chal-
lenges are emerging. In this section, we highlight three biological challenges and two analytical challenges 
that we believe need to be taken into account at this juncture. First, we will discuss so-called ‘epigenetic 
drugs’ and their potential efficacy to slow down or reverse aspects of aging. Second, the importance of 
sex-dimorphism in the regulation of aging in general, and in epigenomic aging in particular, needs to be 
further explored. Third, the importance of epigenomic drift in immune decline needs to be assessed, as 
this will have tremendous impact on improving the health of the elderly individuals. Next, with the accu-
mulation of various genomic data sets throughout aging, the risk is to lose the ability to synthesize infor-
mation and identify major aging-related trends, which highlights the importance of developing powerful 
data-integration methods. Finally, a major caveat is that many aging studies conducted on tissues likely 
discover both cell intrinsic changes and changes due to altered cellular composition of the profiled tissue. 
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An important research avenue moving forward is to assess the relative importance of cell-intrinsic versus 
cell-compositional changes potentially with experiments conducted on sorted cells. However, reliable 
markers for cell sorting are not available for all cell types, and the expression of such markers may itself 
be influenced by aging; thus, we also highlight the need to address this question.

5.1  TOWARD EPIGENETIC LONGEVITY DRUGS?
The plasticity of chromatin states in general, and of aging chromatin states upon environmental changes 
in particular, suggests that chromatin itself could be important therapeutic target to promote healthy 
aging in human.

A growing number of studies have explored the hypothesis that aged somatic cells could be ‘reju-
venated’ through in vitro reprogramming to an induced pluripotent stem cells (iPSCs) state [136]. 
Indeed, iPSCs derived from old donors have been previously associated with improved hallmarks of 
cellular aging [136], in particular with resetting to a more youthful state of the telomere size, gene 
expression patterns, and oxidative stress levels. In a recent study, it has been shown that short-term 
induction of reprogramming in vivo by transient overexpression of the Yamanaka factors (Oct4, Sox2, 
Klf4, and c-Myc) improves the hallmarks of aging and extends the lifespan in a mouse model of pre-
mature aging and in human cells [137], suggesting that in vivo reprogramming has the capacity to 
rejuvenate mammalian cells and reverse symptoms of aging. These studies also highlight the signifi-
cance of epigenetic changes as potential drivers of aging-related cellular deterioration and the plasticity 
of the aging process. Future studies are needed to uncover mechanisms behind reprogramming-related 
cellular rejuvenation and to establish whether this phenomenon can be safely used to rejuvenate human 
cells.

Chromatin-modifying enzymes themselves could constitute therapeutic targets for healthy aging in 
human. Indeed, small molecular inhibitors of chromatin modifiers have been identified and have been 
successfully used in anticancer therapies [138,139]. Interestingly, treatment with class I and II HDAC 
inhibitors (e.g., TrichostatinA, Sodium Butyrate) have been shown to increase the lifespan of model 
organisms [140–142] or to improve cognitive aging in mice [143]. An array of specific inhibitors (e.g., 
SRT1720) for class III HDACs (i.e., Sirtuins) has been developed. Consistent with a role of sirtuins in 
aging regulation, treatment of mice with these inhibitors was associated to increased lifespan [144–
146], and improvement of several health span parameters, including neuroprotection [147], metabolic 
health [144], or preservation of bone density [145,148]. There has been less focus on drugs targeting 
histone methylation. Interestingly, a recent study showed that treatment with inhibitors of H3K79 
methyltransferase DOT1L (i.e., epz-4777, epz-5676) improved the lifespan and the accelerated aging 
phenotype of Zmpste24−/−progeroid mice [149]. Improving the specificity of epigenetic drugs and 
testing their efficacy in different contexts could be instrumental to treat age-related diseases. A major 
hurdle for epigenetic drug design for human health and longevity will be to minimize potential unde-
sired and potentially deleterious pleiotropic effects.

5.2  SEX-DIMORPHISM AND IMPLICATIONS
Despite the progress of modern medicine, human longevity remains sex-dimorphic, with the life expec-
tancy of women systematically exceeding that of men [150]. Though laboratory mice do not display 
consistent sex-dimorphism in lifespan [150], many experimental interventions that successfully extend 
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the life and health span of mice display sex-dimorphic responses [4,151,152]. For instance, rapamycin 
treatment preferentially extends female lifespan, whereas acarbose treatment preferentially extends 
male lifespan in mice [4]. In control conditions, thousands of genes can display sexual dimorphic 
expression across a range of tissues in mice and humans [153–156]. Interestingly, DR, a regimen typi-
cally associated to increased longevity and health, leads to a feminization of the gene expression profile 
of male mouse livers (i.e., renders the gene expression profile more similar to that of female mice) 
[157]. This observation raises the intriguing possibility that sexual dimorphic gene expression may 
indeed play an important role in aging and longevity. However, the molecular mechanisms that underlie 
gender differences in aging and lifespan regulation are still poorly understood.

Recent studies comparing male and female epigenomic profiles across various tissues have revealed 
sex-dimorphic chromatin features, specifically chromatin accessibility in human T-cells [128], a panel 
of histone modifications in Roadmap Epigenomics tissues [158], 5-mC and 5-hmC DNA methylation 
in mice hippocampi [159]. Though a large part of these sex differences likely directly stems from dif-
ferential sex chromosome ploidy, a number of these differences were also identified on autosomes, 
suggesting that chromatin may be regulated differently in male versus female cells [128,158,159]. Part 
of the explanation could be that several genes encoding important chromatin regulators, such as methyl-
CpG-binding protein MeCP2 and H3K27me3 demethylases UTX and UTY, are situated on the sex 
chromosomes in humans, and thus expressed in a sexual-dimorphic manner [156]. Despite the potential 
significance of sex-dimorphism in the aging epigenome and its implications for human health, there is 
remarkably little known on differential molecular regulation of the female versus male lifespan, and 
specifically on how epigenetic mechanisms may play a part in this difference.

A key difference in the male and female body environment resides in circulating sexual hormones. 
Sex steroid hormones (e.g., estrogens like estradiol, or androgens like testosterone) are systemic endo-
crine factors that decline during aging in humans of both sexes. For instance, in humans, menopause 
marks the end of ovarian endocrine activity and is associated to a shutdown of female sex steroid hor-
mones synthesis. These hormonal changes are likely to impact gene expression in woman tissues, as 
estrogens are known to act through nuclear receptors, which can directly modulate chromatin organiza-
tion and downstream transcriptional activity [160,161]. Interestingly, treatment with estradiol leads to 
increased histone acetylation in ex-vivo brain slices from young rats but not in slices from old rats 
[162]. In postmenopausal women, estrogens deprivation is thought to promote the onset of osteoporo-
sis, cardiovascular diseases, immunity decline, and neurodegeneration [163]. Consistently, a recent 
study showed menopause is associated to accelerate aging according to the DNA methylation epigen-
etic clock [164]. Future studies will need to examine the mechanistic underpinnings of sex-dimorphic 
aging in mammals, disentangle the role of sex-steroid hormones in this process, notably through the 
aging epigenome.

5.3  EPIGENOMICS OF IMMUNE SYSTEM AGING
Aging impacts all of body’s cell types and tissues, which leads to changes in cellular functions. Among 
different cells and tissues, aging-related functional decline in immune cells plays a significant role on 
our health. The immune system is gaining increasing attention nowadays because of its potential impact 
on targeted cancer therapies, and on human lifespan and health span extension. The immune system 
goes through significant changes with aging, including the two ‘hallmarks’ of immune system aging: 
(1) functional decline of the adaptive immune system (i.e., immunosenescence), and (2) an increased 
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permanent systemic inflammation state, also known as “inflamm-aging” [165–167]. These changes 
decrease the immune system’s ability to generate protective responses to immunological threats in the 
elderly and lead to increases in diseases and infections [168–170]. Transcriptome profiling studies have 
revealed changes in gene expression during aging in human peripheral blood mononuclear cells 
(PBMCs) and purified immune cells [171–173]. Moreover, array-based DNA methylation mapping 
revealed that immune aging is also associated with methylation changes at specific CpG sites that could 
be highly predictive of organismal chronological and biological age [54,106,108–110,174,175]. 
Beyond these DNA methylation studies, which are restricted to CpG sites profiled on arrays, we know 
little about the chromatin signatures of immunosenescence or inflamm-aging that could be predictive 
of reduced immune responsiveness at the individual level. Moving forward, revealing the aging-associ-
ated chromatin signatures in immune cells by leveraging recent advances in next generation sequencing 
(NGS) profiling [125,126,135,176] will be critical to identify and target individuals most at risk of 
complications from poor immune responses with age.

5.4  THE CHALLENGES OF MULTIOMIC DATA INTEGRATION AND INTERPRETATION
A major challenge in genomic data analyses for aging research lies in the complexity of the transcriptional 
regulation of gene expression. Transcriptional regulation occurs at many levels; for a complete view of 
gene regulation in a biological system, sophisticated computational methods are required to integrate 
diverse data capturing (1) chromatin accessibility; (2) histone modifications; (3) chromatin interactions; (4) 
protein binding to DNA; and (5) gene expression—bulk or single-cell profiling. Machine learning algo-
rithms that can capture discriminative patterns from example data and use these patterns for prediction hold 
promise to extract actionable information via data integration [177]. Similarly, modeling genomics data in 
the form of interaction networks facilitates data integration and visualization. Another major challenge lies 
in the interpretation of clinical genomics data in the light of an ever increasing amount and diversity of 
public functional data repositories (e.g., NHGRI GWAS (National Human Genome Research Institute 
Genome-wide association study) catalog [178]) and reference data sets (e.g., Roadmap [104]). User-
friendly and publically available software tools are needed for easy integration of genomic data with func-
tional genomic repositories and for breaking the exclusivity of data analyses to computational scientists.

5.5  ACCOUNTING FOR CELL INTRINSIC VERSUS CELL COMPOSITION–DERIVED 
CHANGES WITH EPIGENOMIC AGING

A major challenge in uncovering the regulatory implications of epigenomic changes associated with 
aging lies in the need to dissect signals from mixed cell populations. For example, PBMCs are fre-
quently profiled in DNA methylation and transcriptome studies, since they are easy to isolate from 
human blood samples and contain major immune cell types. Profiling of PBMCs has been proven to be 
effective in assessing one’s global immune health and responses [179,180]. However, with age, the 
composition of PBMCs significantly changes with shrinkage of naïve B and T cell populations—due to 
age-related decline in thymus and bone marrow activity—and subsequently an increase in myeloid/
lymphoid cell ratios. Therefore aging-related epigenomic remodeling in PBMCs is likely to be a com-
bination of cell compositional (i.e., changes in cell frequency in the mixture) and cell-intrinsic (i.e., 
omic changes in specific cells) changes, as was also suggested by a recent study of single-cell transcrip-
tome profiling in aging HSCs in mice [181]. Dissecting to what extent cell-intrinsic and 
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cell-compositional changes contribute to the remodeling observed from the profiles of cell mixtures is 
not a straightforward process. A powerful and user-friendly paradigm has been recently implemented 
to solve this question on the transcriptomic front [182]. A recent computational study has reinforced the 
importance of taking into consideration changes in cell-composition in the analysis of DNA methyla-
tion profiles and provided a framework for such analyses [183]. However, taking into consideration 
cell-composition changes while studying the DNA methylation—and other omics—profiles of cell 
mixtures still requires detailed profiling of subset cell frequencies within the mixture using FACS. 
Though great advances have been made in addressing the role and importance of cell composition 
changes during tissue aging, the potential impact of these changes on the epigenome is still largely 
unclear and will deserve further investigation.

6.  CONCLUSIONS
Demographic projections indicate that the elderly population (aged 65 and over) will double and con-
stitute more than 20% of the US population by 2030 [184]. The elderly are at higher risk for infectious 
diseases (e.g., influenza), autoimmunity (e.g., rheumatoid arthritis), cancer, type 2 diabetes, and cardio-
vascular diseases. Thus, the demographic increase in this population poses a significant economic bur-
den on society—both in direct medical costs and lost productivity. In light of this, it is becoming critical 
to improve our understanding of cellular and molecular mechanisms that regulate human aging so as to 
definite prophylactic or therapeutic strategies to promote healthy aging and to cope with the burden of 
an aging nation.

Studies in model organisms and human samples have established that aging is associated with sig-
nificant epigenomic remodeling (Table 1.1). However, the field of aging epigenomics is still in its 
infancy, and significant challenges need to be addressed in coming years. First, by taking advantage of 
recent advances in NGS technologies, age-associated changes in chromatin interactions, chromatin 
accessibility, and histone modification landscapes need to be studied across diverse cell types. Second, 
the downstream functional consequences of these changes will need to be dissected: by revealing genes, 
pathways, and TFs that are activated or inactivated with aging in response to these epigenomic changes 
and may be responsible for aspects of age-associated functional decline of cells and tissues. Third, 
there is still much to understand about the mechanisms that lead epigenomic changes during aging, for 
example, are specific chromatin modifiers aberrantly driving these changes? The use of targeted genome 
and epigenome-editing technologies based on the CRISPR/CAS9 or TALEN technologies [185,186] 
will be invaluable in addressing this question and will facilitate our progress from correlation to causa-
tion. Finally, the impact of pro-longevity or pro-healthy aging interventions on these epigenomic sig-
natures will be essential to establish. For example, can the aging epigenome be reset or reversed through 
DR or exercise? Studies in model organisms, particularly in mice, will be fundamental in answering 
these questions.

Despite recent progress, how epigenetic information integrates environmental inputs in the context 
of a set genetic background throughout life remains poorly understood. Propelled by efforts to attain 
‘precision medicine’, the genomics field is rapidly advancing from reference to personal genomes. Just 
as no two people with the same disease have acquired the disease in the same way, no two individuals 
are likely to age in quite the same way. Genomic patterns of aging at the individual level are likely 
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driven by both genotypic and lifestyle differences among individuals. Indeed, recent studies have dem-
onstrated that specific genotypes may drive individual-specific epigenomic patterns (e.g., histone modi-
fication and DNA methylation) [187,188]. Future studies will need to take individual genotypes into 
consideration to uncover the mechanisms that underlie age-associated trajectories in gene expression or 
in chromatin accessibility of individuals.

LIST OF ACRONYMS AND ABBREVIATIONS
HDAC Histone Deacetylase
TE Transposable element
TF Transcription factor

GLOSSARY
CpG islands Genomic regions of CpG dinucleotides clustering, usually concentrated in the promoter regions of 

specific genes. They are defined by a minimum length (≥200 bp) and a high enrichment of CG nucleotides 
(≥60%).

Dietary restriction (DR) Regimen characterized by a reduction in food intake without malnutrition. A state of 
DR can be achieved through various protocols, such as intermittent-fasting, a fasting-mimicking diet, global 
caloric reduction, or restriction of a specific nutrient type (e.g., methionine).

Epigenetics The most commonly used definition of the words describes to modes of genomic regulation not 
directly encoded in DNA, which includes regulatory mechanisms like chromatin modification or noncoding 
RNA. The strict definition of epigenetics encompasses only strictly heritable changes without changes to the 
underlying gene sequence throughout generations.

Epigenetic drift/Epimutations Aberrant or atypical changes in epigenetic states, driven by stochastic events or 
external stimuli.

Genomic instability Stochastic loss of genome integrity. Modes of genomic instability encompass large-scale 
rearrangements (e.g., translocations, inversions, deletions), site-specific alterations (e.g., single nucleotide 
mutations or indels), or transposable element insertions/deletions.

Lifespan Defined as the time elapsed between the birth and death of an organism. It is typically expressed as time 
units for ‘chronological’ aging (i.e., for multicellular organisms) but can also be measured in number of cell 
divisions for ‘replicative’ aging i.e., for unicellular organisms such as yeast).

Transposon/Transposable Element (TE) Mobile endogenous DNA elements. TEs can modify their genomic 
position or increase copy number within a host genome. They are categorized in two main families: Type I 
transposons function through an RNA intermediate (i.e., LINEs, LTRs; ‘copy and paste’ propagation), whereas 
Type II transposons use a DNA intermediate (i.e., ‘cut and paste’ propagation). They typically constitute >30% 
of eukaryotic genomes.
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