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Abstract: The ascending fibers releasing norepinephrine (NE) and acetylcholine (ACh) 

are highly active during wakefulness. In contrast, during REM sleep, the neocortical tone 

is mainly sustained by ACh. By comparing the different physiological features of the NE 

and ACh systems in the light of the GANE model, we suggest how to interpret some 

functional differences between waking and REM sleep. 

 

 

Regulation of neocortical circuits by ascending regulatory systems involves all of the 

classic neurotransmitters. Most of the nuclei located in brainstem, hypothalamus and 

basal forebrain are not only reciprocally connected, but send direct projections to the 

neocortex (Steriade & McCarley 2005; Saper et al. 2010; Jones 2011). The same applies 

to the hypothalamic nuclei releasing neuropeptides such as orexin/hypocretin (in 

wakefulness) and melanin concentrating hormone, MCH (in REM sleep; Jones & Hassani 

2008; Monti et al. 2013; Aracri et al. 2013, and references therein). As a first 

approximation, these bewildering intricacies can be simplified by focusing on the balance 

between the activity of noradrenergic and cholinergic nuclei, which are crucial regulators 

of arousal and cognition (e.g., Constantinople & Bruno 2011; Schmidt et al. 2013). Both 

project varicose fibers that widely innervate the neocortex, and their global effects are 

excitatory. During wakefulness, high levels of NE and ACh cooperate in regulating 
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arousal and cognitive processes. However, although cholinergic transmission is certainly 

implicated in synaptic plasticity (e.g., Berg 2011), the physiological action of NE is 

thought to be more persistent and more closely related to memory retention and 

consolidation (e.g., Constantinople & Bruno, 2011; McGaugh 2013; Schmidt et al. 2013). 

The activity of noradrenergic and cholinergic neurons decreases during non-REM 

(NREM) sleep, whereas in REM sleep ACh release increases again, while NE activity 

remains low (Lee et al. 2005; Datta 2010; Saper et al. 2010; Takahashi et al. 2010; 

Figure 1). The fact that neocortex activation in REM sleep is mainly sustained by ACh is 

a further indication that the cholinergic tone is more directly related to consciousness and 

executive functions. In fact, the role of REM sleep in memory consolidation remains 

controversial (Rasch & Born 2013; Ackermann & Rasch 2014). 

 

 

 

 



 

 
 

 

 

Does the GANE model help to suggest possible explanations of the different functional 

consequences of activating these regulatory systems during brain states? A first central 

assumption is that, under strong neuronal activation, spillover glutamate stimulates 

nearby NE varicosities in an NMDA receptor-mediated way. By activating low-affinity 

β-adrenoreceptors, high NE release would stimulate neuronal excitability as well as 

glutamatergic terminals, thus constituting activity ‘hot spots’ that effectively amplify 

inputs with high priority under phasic arousal. Are such hot spots possible in the 

cholinergic system? Not much is known about the glutamatergic regulation of ACh 
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Figure 1. Cholinergic and noradrenergic activity through the sleep-wake cycle.  

The scheme provides a qualitative comparison of the activity of the ascending 

cholinergic and noradrenergic projections, with no pretension of quantitative 

precision. 
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release, but evidence does exist about ionotropic glutamate receptors regulating 

cholinergic terminals in the neocortex (Ghersi et al. 2003; Parikh et al. 2010). Hence, it is 

conceivable that spillover glutamate also stimulates cholinergic fibers. Because ACh is 

well known to increase glutamate release (Marchi & Grilli 2010), a positive feedback 

loop could generate local ACh hot spots, analogous to those hypothesized by Mather and 

colleagues. 

 

A second central tenet of the GANE model is that the low threshold α2-adrenoreceptors, 

by responding to low and intermediate diffuse NE concentrations, would inhibit 

glutamate release in pathways implicated in low priority signaling, under aroused 

conditions. Under this respect, the cholinergic system presents several differences 

compared to the noradrenergic. In particular: i) cholinergic fibers form both well 

differentiated point-to-point synapses and axon varicosities that sustain more diffuse ACh 

release (Dani & Bertrand 2007); ii) ACh activates both metabotropic (muscarinic, 

mAChRs) and ionotropic (nicotinic, nAChR) receptors. In prefrontal regions, M1 

mAChRs are widespread and produce excitatory effects related to working memory 

through different cellular mechanisms (e.g., McCormick & Prince 1986; Gulledge et al. 

2009; Proulx et al. 2014). Their EC50 for ACh is in the low μM range. On the other hand, 

nAChRs can be broadly divided into two functional classes (Dani & Bertrand 2007). 

Heteromeric nAChRs have high affinity for ACh (with EC50 in the μM range), relatively 

low permeability to Ca2+ (PCa) and slow desensitization in the presence of agonist. 

Homomeric nAChRs have high PCa (in the order of the one displayed by NMDA 

receptors), but low affinity for ACh (EC50 ≈ 200 μM), and quick desensitization kinetics. 

The role of different nAChR subtypes in regulating excitatory and inhibitory transmission 

is still matter of debate. Nonetheless, a striking difference with NE transmission is 

immediately apparent. The long-term effects on synaptic consolidation are generally 

thought to depend on Ca2+ signals. However, within the putative ACh hot spots, the 

efficacy of high-PCa homomeric receptors would be blunted by quick desensitization. 

High ACh concentrations would also tend to desensitize heteromeric nAChRs. This 

would prevent sustained Ca2+ entry through nAChRs as well as by nAChR-dependent 

activation of glutamate release, and thus of NMDA receptors. Therefore, differently from 



 

the case of NE, it seems unlikely that ACh hot spots can produce long-term cellular 

effects considerably different from those produced by lower ACh concentrations, as 

mediated by mAChRs and heteromeric nAChRs. On the other hand, stimulation of ACh 

receptors could contribute to sustain local NE hot spots because of the potentiating effect 

on glutamate release, when both cholinergic and NE systems are active (a point worth of 

further study).  

 

In summary, by following up the GANE model reasoning, one is led to conclude that low 

and high concentrations of NE and ACh produce distinct functional effects on neocortical 

networks. Low to moderate ACh release sustains global neocortex arousal in both 

wakefulness and REM sleep. However, in the absence of NE activity (as in REM sleep), 

cholinergic activity is unable to yield long-term synaptic changes, such as those 

implicated in memory retention, which would partly explain the well known difficulty of 

recalling oneiric activity. Instead, high levels of ACh seem more fit to shape the rapid 

synaptic responses implicated in executive functions, as the quick kinetics of the low 

affinity nAChRs would suggest. We believe that deeper functional studies of the 

interplay between the ascending regulatory systems, led by heuristic models such as the 

GANE, will greatly help progress in understanding the physiological basis of cognition. 
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