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Abstract: Mather and colleagues postulate that norepinephrine promotes selective 

processing of emotionally salient information through local “hotspots” where 

norepinephrine release interacts with glutamatergic activity. However, rodent and human 

findings show that norepinephrine is ineffective in modulating mnemonic processes in 

absence of a functional amygdala. We therefore argue that emphasis should shift towards 

modulatory effects of amygdala-driven changes at the network level.  
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Emotional arousal enhances memory of currently relevant, i.e., salient, information, 

whereas it can impair memory of irrelevant information (Mather & Sunderland, 2011; 

Bennion et al., 2013). Mather et al. formulate the interesting hypothesis that when 

norepinephrine (NE) release coincides with high glutamatergic activity within an 

activated brain region or neuronal ensemble, NE release is further increased, resulting in 

locally enhanced neuronal activity and better memory. In contrast, when NE release does 

not coincide with high glutamate levels, NE suppresses neuronal activity, resulting in 

memory impairment. Although their model incorporates interactions at the systems level, 

it puts strong emphasis on local processes, creating NE “hotspots”. Here, we argue that 

such primarily local effects underestimate the importance of modulatory influences of the 

amygdala on encoding and consolidation of information throughout the network, and that 

without a functioning amygdala, such NE hotspots might be unable to affect local 

mnemonic processes.  

 

According to the widely accepted ‘amygdala modulation hypothesis’, basolateral 

amygdala (BLA) activity enhances memory of emotionally arousing experiences by 

influencing neural plasticity mechanisms in target regions elsewhere (McGaugh, 2002). 

In rodents, pharmacologically enhancing or reducing noradrenergic activity within the 

BLA, i.e., mimicking different arousal conditions, is sufficient to alter training-associated 

neural plasticity in distal brain regions (McIntyre et al., 2005; Beldjoud, Barsegyan, & 

Roozendaal, 2015) and to determine whether neural representations in these other areas 

are being strengthened (Roozendaal & McGaugh, 2011). Recent evidence suggests that 

such BLA interactions with other brain regions not only modulate the strength of 

memory, but are also importantly involved in regulating memory precision (Ghosh & 

Chattarji, 2015), and that NE activity in particular may be the driving force behind 

improved accuracy (Barsegyan, McGaugh, & Roozendaal, 2014). Human neuroimaging 

research corroborates these findings by showing that amygdala activity during encoding 

of emotionally arousing stimuli predicts enhancement of hippocampus-dependent 

memory (Hamann, et al., 1999; Canli et al., 2000). ß-Adrenoceptor blockade during 

encoding abolishes the emotional memory enhancement effect (Cahill et al., 1994) and 

suppresses memory-related amygdala activity (Strange & Dolan, 2004). Amygdala-



 

hippocampal connectivity, furthermore, is stronger for emotionally arousing than for 

neutral stimuli (Dolcos, Labar, & Cabeza, 2004), and the dominant directionality of this 

connectivity is indeed from amygdala toward hippocampus (Fastenrath et al., 2014). 

 

Critically, amygdala-NE interactions selectively enhance memory for emotionally 

arousing as compared to neutral stimuli (e.g., Cahill et al., 1994). Mather et al. posit that 

the amygdala modulation hypothesis explains this selectivity in terms of a trade-off in 

which resources are shifted toward the emotional stimuli. However, recent findings 

indicate that there may be more to it than a simple trade-off. For instance, Lovitz & 

Thompson (2015) show that intra-BLA infusion of the -adrenoceptor agonist clenbuterol 

induces a long-term increase in excitability of hippocampal neurons when administered 

after emotionally arousing inhibitory avoidance training, but that clenbuterol decreases 

hippocampal excitability in non-trained control animals. These findings strongly support 

the idea that the impairing effects of amygdala-NE interactions on memory of non-

salient/non-arousing information involve an active process that is dependent on the 

amygdala.  

 

Converging human evidence for this notion comes from patients with damage to the 

amygdala. For instance, patients with Urbach-Wiethe disease (UWD), who exhibit 

selective calcifications in the BLA (Terburg et al., 2012), fail to show emotional 

enhancement of episodic memory (Cahill et al., 1995). Studies in patients with other 

forms of amygdala pathology furthermore revealed a deficit in up-regulating processing 

of emotional stimuli in higher-order visual cortices (Vuilleumier et al., 2004) as well as 

an impairment in increasing encoding-related hippocampal activity for emotional items 

(Richardson, Strange, & Dolan, 2004). Critically, UWD patients also exhibit enhanced 

memory for neutral information encountered in close temporal proximity to emotionally 

arousing stimuli (i.e., diminishing the impairment for such information observed in 

healthy controls; Strange, Hurlemann, & Dolan, 2003). One could argue that such 

findings remain consistent with an interpretation in terms of local hotspots of NE activity 

if amygdala damage would lead to a general impairment of NE signaling. However, 

UWD patients, although they fail to acquire conditioned responses, appear to exhibit 



 

normal arousal responses, as evidenced by normal skin conductance and startle responses 

to unconditioned stimuli (Bechara et al., 1995; Klumpers et al., 2015). Thus, findings 

from amygdala-lesioned patients agree with animal work in suggesting that due to BLA 

damage, NE is ineffective in modulating local memory processes elsewhere in the brain. 

 

Other studies have shown that stress-related hormones such as glucocorticoids also 

contribute to selective enhancement of emotional memories. For instance, in humans, 

elevating stress hormone levels after learning generally leads to consolidation benefits for 

emotionally arousing as compared to neutral information (Abercrombie et al., 2006; 

Kuhlmann, & Wolf, 2006). Rodent work has shown that NE activity within the amygdala 

also crucially determines the modulatory effects of stress hormones on neural plasticity 

and memory in distal brain regions (Roozendaal et al., 1999). The synthetic 

glucocorticoid dexamethasone given immediately after inhibitory avoidance training 

enhances long-term memory of this training in rats with an intact BLA, but 

dexamethasone impairs inhibitory avoidance memory if noradrenergic activity in the 

BLA is blocked with a -adrenoceptor antagonist (Quirarte, Roozendaal, & McGaugh, 

1997). Thus, these findings again support a critical role for BLA noradrenergic activity in 

determining enhancements or impairments of information storage in other brain regions.  

 

In conclusion, local hotspots of NE activity at sites where mnemonic operations take 

place alone cannot explain the selectivity afforded by amygdala-driven modulatory 

processes. This observation, of course, begs the question what mechanism underlies these 

distant modulatory effects. Important clues have come from functional connectivity 

studies in humans, showing that modulated regions are part of distinct large-scale neural 

systems, such as the “salience” and “default mode” networks (Hermans et al., 2011; 

Hermans et al., 2014). Novel technologies for electrophysiological recordings and 

optogenetics in rodents are beginning to make it possible to study such networks in 

unprecedented spatiotemporal detail. We predict that these developments will ultimately 

lead to the conclusion that selective processing of arousing material results primarily 

from amygdala-driven changes in network properties of large-scale neural systems, rather 

than NE-induced local hotspots of activity. 
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