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Abstract. Alzheimer’s disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly.
Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-� protein precursor (A�PP)
and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of
AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOE�4) is
believed to be a major genetic risk factor in acquiring LOAD, with female APOE �4 carriers at highest risk. Nonetheless, not
all the elderly, even older female APOE �4 carriers, develop LOAD, suggesting that other factors, including environmental
exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure,
especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure,
genetic risk factor (APOE �4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk
factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female
sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the
strategies for its prevention and treatment.
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INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative
disease, is a major cause of dementia in the elderly
with healthcare costs tripling the general popula-
tion age 65 or older. According to the Alzheimer’s
Association, 5.8 million Americans and 26.6 million
people worldwide suffer from AD currently. With the
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increase in the lifespan, the prevalence of AD will
be increased significantly. Despite extensive studies,
there is still no effective treatment for this devastat-
ing disease due to an incomplete understanding of
its etiology and pathogenesis. Early-onset (familial)
AD, which accounts for less than 5% of AD cases,
is attributed to mutations in the genes coding for
amyloid-� protein precursor (A�PP) or presenilin1
(PS1) or presenilin2 (PS2), leading to increased pro-
duction and deposition of amyloid-� peptide (A�) in
the brain. The causes for the late-onset Alzheimer’s
disease (LOAD, also called sporadic AD), which
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Fig. 1. Schematic flow chart of potential risk factors for the devel-
opment of late-onset Alzheimer’s disease (LOAD).

accounts for >95% of all AD cases, however, remain
unclear.

Several risk factors for AD have been identified,
including old age, carrying the apolipoprotein E4
(APOE �4) allele, and being postmenopausal women
(Fig. 1). Of 5.8 million Americans who have AD,
81% are age 75 or older [1]. It is estimated that the
incidence of AD doubles every 5 years after age 65
and that 32% of the population at the age of 85 or
older suffer from AD. Therefore, aging is considered
to be the greatest risk factor for the development of
AD [1–3]. Nonetheless, not all elderly suffer from
AD, indicating that aging is a critical risk factor but
alone is not sufficient to cause the disease. Human
apolipoprotein E (apoE), existing in three isoforms
(apoE2, apoE3, and apoE4), encoded by three dis-
tinct alleles �2, �3, and �4, is a major carrier of lipids
and cholesterol. Both epidemiology and animal stud-
ies suggest that the APOE �4 allele, which is carried
by approximately 15% of the population worldwide
[4–7], is a major genetic risk factor for AD [7, 8]. It
has also been well documented that two-thirds of AD
patients are women and postmenopausal women are
at increased risk [9–11]. Importantly, APOE �4 has
been shown to have more effect on the susceptibil-
ity of women to AD than it has on men [4, 11–16].
Nonetheless, not all of the APOE �4 carriers, even
older female APOE �4 carriers, develop AD, sug-
gesting that other factors, including environmental
exposure, must play a role (Fig. 1).

Ozone (O3) and particulate matters (PMs) are two
of most abundant air pollutants in suburban and
urban settings. Accumulated evidence from both epi-
demiology and animal studies suggests that exposure
to unhealthy levels of O3 and/or PMs, especially
particulate matter with an aerodynamic diameter
of 2.5 micrometers (PM2.5) or smaller, may con-
tribute to the onset of AD (Fig. 1). Nonetheless,
which environmental pollutant(s) is (are) respon-
sible and how environmental pollution contributes
to the development of AD remains unclear. In

this review, we summarized the recent findings
that support a potential link between environmen-
tal exposure, especially O3 and PM2.5 exposure, and
cognitive impairment. Interactions between environ-
mental exposure, genetic risk factor APOE �4, and
sex in the development of AD are also discussed
briefly.

AMBIENT OZONE EXPOSURE AND AD

O3 is a highly reactive oxidant and one of the
most abundant urban pollutants. Over 30% of the
population in the United States live in areas with
unhealthful levels of O3 (American Lung Associa-
tion State of the Air, 2012). Besides, some workers
(e.g., pulp mills and outdoor construction) are inter-
mittently exposed to relatively high levels of O3
(0.3 ppm–1 ppm) through their working environment
[17–24]. Although the lung is the primary target,
emerging evidence from epidemiology and animal
studies indicates that O3 inhalation causes patho-
logical changes in other tissues/organs beyond the
respiratory system and that exposure to high levels of
O3 may be a risk factor for AD [25–37].

Evidence from human studies

Accumulation of A�42 in the hippocampus and
frontal cortex, the key brain regions required for
learning and memory, is a pathological feature of
AD. Several studies have shown that children and
young adults who lived in the areas heavily pol-
luted with O3 and PMs, like Mexico City, had an
increased level of A�42 in their brains, compared with
same-aged children and young adults who lived in
low polluted areas [38–42]. Although the mechanism
underlying the increased A� load in the brain of the
children/young adults living in heavily polluted areas
is unclear, it has been reported that these children
and young adults also have augmented neuroinflam-
mation, disrupted blood-brain barriers, and damaged
epithelial and endothelial cells in their brains com-
pared to children and young adults who lived in clean
air areas [38, 40–42]. These data suggest that dys-
function of endothelial and epithelial cells as well as
blood-brain barriers may contribute to brain A� accu-
mulation in these children/young adults exposed to
polluted air. It should be pointed out, although O3 and
PM are the major air pollutants in Mexico City, other
types of pollutants also exist. None of these human
studies have examined the correlation between neu-
ropathological changes with the concentration of any
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of these specific air pollutants. Therefore, the results
from these studies can only suggest a potential link
between air pollution and neuropathology in general
and cannot distinguish the effects of O3 and PM or
other air pollutants.

To determine whether exposure to O3 and/or PMs
contributes to the onset of AD, several epidemiology
studies have been conducted recently [25–30]. By
analyzing the Neurobehavioural Evaluation System-
2 (NES2) data from 1,764 adults participating in
the Third National Health and Nutrition Examination
Survey between 1988 and 1991 as well as the ambi-
ent PM10 (PM with aerodynamic diameter <10 �m)
and O3 data from EPA database, Chen et al. reported
that there was no association between PM10 expo-
sure and cognitive function measured by the NES-2
after adjustment for sociodemographic factors [25].
However, each 10 ppb increase in annual O3 level
was associated with 3.5–5.3 years of aging-related
decline in cognitive performance [25]. Using a case-
control comparison strategy, Wu et al. reported that
long-term exposure to high concentrations of PM10
(≥49.23 �g/m3) or O3 (≥21.56 ppb) was signifi-
cantly associated with an increased risk of AD in
Taiwan [26]. Gatto et al. examined cross-sectional
associations between various ambient air pollutants,
including O3, PM2.5, and nitrogen dioxide (NO2),
and six measures of cognitive function and global
cognition among healthy, cognitively intact individ-
uals residing in the Los Angeles basin. They found
that exposure to high levels of PM2.5 was associated
with lower verbal learning, exposure to NO2 ≥ 20 ppb
was associated with a lower logical memory, and
exposure to 49 ppb of ambient O3 was associated
with a lower executive function [28]. By conduct-
ing a cohort study with 95,690 participants age ≥65,
another group of scientists from Taiwan reported a
weak association between ambient O3 concentration
and AD risk at baseline but a 211% increase in risk
with every increase of 10.91 ppb of ambient O3 con-
centration over the follow-up period from the year
2000 to the year 2010 [27]. Their studies suggest
that long-term exposure to O3 above the current US
Environment Protection Agency (EPA) standards is
associated with an increased risk of AD. In a huge
population study aimed to evaluate the association
between long-term exposure to air pollution and first
hospitalization for dementia, Cerza et al. reported
that there was a negative association between expo-
sure to NO2 and dementia hospitalization, whereas
exposure to O3 was positively associated with demen-
tia hospitalization, especially senile dementia [30].

By assessing the cognitive performance of individu-
als from National Alzheimer’s Coordinating Center,
the average age of 76.8 years, and ambient O3 and
PM2.5 concentrations established using a space-time
Hierarchical Bayesian Model, Cleary et al. reported
that the increased levels of O3, but not PM2.5, cor-
related with an increased rate of cognitive decline
after adjustment for key individual and community-
level risk factors [29]. Most interestingly, their data
showed that individuals harboring one or more APOE
�4 alleles had a faster rate of cognitive decline and
that the deleterious association of O3 was confined
to individuals with normal cognition when entering
the study [29]. Their findings suggest that APOE
�4 may accelerate O3 exposure-associated cognitive
decline in the elderly and that healthy individuals are
more sensitive to O3 effect than memory-impaired
individuals. Potential interaction between APOE �4
and environmental exposure in the onset of AD will
be further discussed later in this review. Together,
these epidemiologic studies suggest that exposure
to high levels of O3 is a risk factor for AD in old
population.

It should be pointed out that controversial results
have also been reported [43, 44]. Using retrospective
cohort from primary care data in London, Carey et al.
reported that there was no association between expo-
sure to higher levels of O3 and dementia, although
they found that exposure to high concentrations
of NO2 or PM2.5 was associated with dementia
and that this association was more consistent for
AD than vascular dementia [43]. In another large
population study (approximate 2.1 million individ-
uals) conducted in Ontario, Canada, Chen et al.
reported that no association was found between O3
exposure and the incidence of dementia between
2001 and 2013, although a positive association was
found between exposure to PM2.5 and dementia
incidence [44]. The reason for such a discrepancy
between different population studies remains to be
determined.

Evidence from animal studies

Epidemiology studies, although important, can
only establish a correlation between an exposure and
a disease, not a cause-effect relationship. Moreover,
it is difficult to elucidate the underlying molecular
mechanism from epidemiology studies. In contrast,
animal studies can help establish a cause-effect
relationship and dissect the molecular mechanisms
underlying the pathophysiology. In this regard,
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several studies have been conducted to explore the
potential link between O3 exposure and AD-like
neuropathophysiology, using experimental animal
models [31, 32, 34, 36, 45–49]. Rivas-Arancibia et
al. showed that exposure to 0.2 ppm–1 ppm of O3 for
a short period (4 hours) impaired long-term memory,
reduced dendritic spines, and induced brain lipid per-
oxidation in young rats [34, 45, 50]. This group also
reported that O3 exposure stimulated A�42 produc-
tion, impaired mitochondrial function, and reduced
brain repair capacity, whereas treatment with antiox-
idant vitamin E attenuated O3-induced hippocampal
lipid peroxidation and memory deficits in rats [36,
46–48], suggesting that increased oxidative stress is
responsible for O3-induced memory deficit. More-
over, they have shown that O3 exposure induced
endoplasmic reticulum stress and apoptosis in rat hip-
pocampus [49], suggesting that O3 inhalation impairs
memory through multiple mechanisms.

O3 in the atmosphere (troposphere) is formed
from chemical reactions between different air pol-
lutants such as nitrogen oxides and volatile organic
compounds (methane, organic solvents, etc.) under
sunlight. Therefore, O3 concentration in the atmo-
sphere is high during the day and low in the evening.
Moreover, several days of elevated O3 are usually fol-
lowed by a long period of “clean” air in most urban
settings, although air pollution can last much longer
time in heavily polluted areas such as Mexico City
than in other areas. To mimic what occurs in the
urban settings, we investigated, in a previous study,
whether exposure to a cyclic O3 exposure protocol,
which consists of 5 days of O3 exposure (0.8 ppm, 7
hours/day) followed by 9 days of filtered air exposure,
may contribute to AD pathology, using A�PP/PS1
double transgenic mice, a well-established murine
model of familial AD [31]. We found that exposure
of 6-week-old non-transgenic littermates (wild type
mice) to O3 through a cyclic exposure protocol for 8
cycles had no significant effects on memory of either
male and female wild type mice [31]. However, expo-
sure of 6-week-old A�PP/PS1 mice to such a cyclic
O3 exposure protocol accelerated learning/memory
function loss in male A�PP/PS1 mice, although it had
no significant effect on female A�PP/PS1 mice [31].
We also found that male A�PP/PS1 mice had lower
levels of antioxidants (glutathione and ascorbate)
and augmented oxidative stress response (increased
NADPH oxidase expression and lipid peroxidation)
as well as increased neuronal apoptosis upon O3
exposure, compared to female A�PP/PS1 mice [31].
On the other hand, female A�PP/PS1 mice had higher

basal levels of A�42 and A�40 compared to male
A�PP/PS1 mice; O3 exposure had no significant
effect on brain A� load in either sex. Together, our
data suggest that exposure to O3 under the conditions
that mimic human exposure scenarios per se may not
cause AD but can accelerate the pathophysiology of
AD in genetically predisposed populations [31]. Our
data also suggest that exposure to O3 under the con-
ditions mimic to human exposure scenarios impairs
memory probably through inducing oxidative stress
and neuronal cell death, rather than increasing brain
A� accumulation.

Potential signals mediating lung-brain effects of
O3

The most challenging question that remains to be
answered is how inhaled O3 affects brain structure
and function. In other words, what is (are) the signal-
ing molecule(s) that mediate(s) the lung-brain effects
of inhaled O3? As a highly reactive oxidant, O3 reacts
quickly with multiple substrates in airway surface
lining fluid and produces secondary reactive species
such as ozonide radicals, singlet oxygen, antioxidant
radical intermediates, and lipid peroxidation prod-
ucts [51, 52]. The extrapulmonary effects are most
likely induced by these secondary reactive species
rather than by O3 itself. Several hypotheses have
been proposed to explain the extrapulmonary effects
of O3, including inflammatory mediators [53], nitric
oxide [54], and reactive lipid peroxidation product(s)
[55] (Fig. 2). Erickson et al. reported that exposure
of female BALB/c mice to 2 ppm O3 for 2 hours
increased the level of acute-phase serum amyloid
A (A-SAA) protein in the liver, serum, and brain,
although it had no significant effect on the blood lev-
els of 23 cytokines/chemokines, except keratinocyte
chemoattractant (KC/CXCL1), suggesting that A-
SAA may be an important systemic signal of O3
exposure to the CNS [56]. Mumaw et al. further
showed that exposure to 1 ppm O3 for 4 hours caused
a persistent activation of brain microglia but had no
significant effect on the levels of circulating cytokines
such as CCL2, CCL11, TNF�, IL-6, and IL-1� in 8-
weeks old Sprague-Dawley rats [57]. Interestingly,
they showed that the serum from O3 exposed mice
induced an augmented immune response to LPS in
hippocampal mixed glia cultures from old rats, com-
pared to hippocampal glia cultures from young rats,
and that monoclonal macrophage 1 antigen (MAC1)
blocking antibodies eliminated O3-induced priming
effect [57]. These data suggest that O3 exposure
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Fig. 2. Potential signal molecules involved in O3 inhalation-
induced brain pathophysiology.

leads to increases in non-cytokine-related signals in
the circulation, which promote brain inflammatory
responses [57].

Malondialdehyde (MDA) is a lipid peroxidation
end product. Cretu et al. reported that exposure of
rats to 0.5 ppm O3 for 10 minutes daily for 2 or 4
weeks increased MDA level in the plasma and brain
as well as pathological changes in the brain [58]. In
a previous study, we showed that male A�PP/PS1
mice had lower levels of antioxidants (glutathione
and ascorbate) and augmented induction of NADPH
oxidase as well as increased neuronal apoptosis upon
O3 exposure, compared to female A�PP/PS1 mice
[31]. This was associated with accelerated learn-
ing/memory impairment in male A�PP/PS1 mice
[31]. We also found that O3 inhalation increased
the amounts of 4-hydroxynonenal (4HNE), an end
product of lipid peroxidation, in the plasma and hip-
pocampus/cortex of male, but not female, A�PP/PS1
mice [31]. Moreover, treatment of neuroblastoma
SHSY5Y cells with 4HNE significantly increased
apoptotic cell number, the activity of Caspase-3/7,
and expression of p53 and Bax, three apoptosis
markers [31]. Together, these data suggest that cir-
culating lipid peroxidation products, such as MDA
and 4HNE, which were released potentially from the
oxidatively damaged lung, may contribute to brain
pathological changes under O3 inhalation condition
[31, 58].

PARTICULATE MATTER EXPOSURE AND
AD

Particulate matters (PMs) are liquid or solid
matters suspended in the atmosphere.The major com-
ponents of airborne particulates are sulfates, nitrates,
ammonium, chloride, elementals, organic carbons,
biological materials, and minerals, although the exact
composition of PMs varies considerably depend-
ing on the location, weather, the season, time of
day, emission sources, and many other factors [59].
Besides natural sources, such as volcanic activi-
ties and wildfires, human activities, including the

combustion of fossil fuels, mining, and agricultural
activities contribute importantly to PM pollution.
PMs are arbitrarily grouped into ultrafine PMs
with aerodynamic diameter <100 nm (PM0.1), fine
PMs with aerodynamic diameter 2.5 micrometers
(PM2.5), and coarse PMs with aerodynamic diam-
eters between 2.5 and 10 microns (PM10). As PM2.5
and PM0.1 can penetrate and deposit into the deep
lung tissue and enter the circulation, these forms of
PMs have greater potential to cause extrapulmonary
diseases than PM10. Accumulated evidence from
human and animal studies suggests that exposure to
particulate matters contributes importantly to cogni-
tive decline and neuropathological changes [43, 44,
60–74].

Human studies

Emerging evidence from epidemiology studies
suggests that exposure to PMs is an important envi-
ronmental risk factor for the development of AD [26,
28, 43, 44, 62–67], although negative findings have
also been reported [25, 29]. A longitudinal study
conducted with 645 pairs of cognitively impaired
subjects and their caregivers showed that aggra-
vated neuropsychiatric symptoms were associated
with exposure to high levels of PM2.5 in South Korea
[63]. A similar result was reported in another study
conducted with 2,896 adult Korea aged 70 to 84
years [74]. The authors concluded that air pollutions,
especially PM2.5, were associated with cognitive
impairment, including global cognition, attention,
memory, and executive function in Korean old adults
aged ≥70 years [74]. Through analysis of 130,978
adults aged from 50 to 79 years residing in London as
well as the average annual concentrations of nitrogen
dioxide (NO2), PM2.5, and O3 at 20 × 20 m resolu-
tion from dispersion models, Carey et al. reported that
there was a positive exposure-response relationship
between dementia and NO2 or PM2.5, but not O3,
exposure and that the association was more consis-
tent for AD than vascular dementia [43]. By following
approximately 9.8 million subjects in 50 cities of the
northeastern US, Kioumourtzouglou et al. reported
that exposure to PM2.5 is associated with signifi-
cant increases in the hazard ratios for dementia, AD,
and Parkinson’s disease [61]. AD is associated with
reduced hippocampal volume. Using brain-imaging
data from UK Biobank, a large community-based
dataset, and air pollution data, Hedges et al. showed
that exposure to PM2.5 was associated with a smaller
left hippocampal volume, whereas none of the other
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air pollutions, including PM2.5–10, PM10, nitrogen
oxide, and nitrogen dioxide, was associated with
hippocampal volume change [67]. By analyzing the
data from four cohort studies conducted in Canada,
Taiwan, the UK, and the US involving 12 million
elderly aged ≥50 years, Tsai et al. found that expo-
sure to a 10�g/m3 increase in PM2.5 from 2015
to 2018 was significantly and positively associated
with increases in dementia and AD cases [64]. An
early decline of episodic memory is reported in pre-
clinical AD patients. To determine whether PM2.5
exposure is associated with episodic memory decline
and underlying neuroanatomic changes, Younan et al.
conducted a longitudinal study using the data from
Women’s Health Initiative Study of Cognitive Aging
and the Women’s Health Initiative Memory Study of
Magnetic Resonance Imaging [65]. Episodic mem-
ory was assessed by the California Vernal Learning
Test, including measuring immediate free recall/new
learning and delayed free recall, and by two brain
MRI scans. A spatiotemporal model was used to esti-
mate 3-year average PM2.5 exposure before 1st MRI
image analysis. Using multilevel structural equation
models, they found that PM2.5 was associated with
greater declines in immediate recall and new learn-
ing but not in delayed-recall or composite scores [65].
Their findings suggest that PM2.5 exposure is asso-
ciated with memory decline at the preclinical stage
[65].

Animal studies

Numerous studies in experimental animals have
also shown that exposure to particulate matters
induces neuroinflammation and AD-like pathology
and impairs learning and memory [59, 71–73, 75–79].
Kim et al. reported that exposure of wild type mice
to nickel nano particles increased brain levels of both
A�40 and A�42 as well as the ratio of A�42 to A�40, a
more disease-related change [71]. Bhatt et al. further
showed that exposure of wild type mice (C57BL/6) to
PM2.5 for 9 months increased brain beta-site A�PP
cleaving enzyme (BACE) protein level, A�PP pro-
cessing, and A�40 as well as cyclooxygenase 1 and
2 protein levels in mouse brain, although exposure
to PM2.5 for 2 months had no significant effects
[75]. No significant effect of PM2.5 exposure on
the oxidative stress markers or synaptic marker was
observed in the brain of these PM2.5 exposed wild
type mice [75]. Some studies have been conducted
to determine whether PM exposure accelerates neu-
ropathological changes in AD model mice [73, 77].

Jew et al. reported that exposure of middle-aged
(12.5 months old) mice to human exposure relevant
concentrations of particulate matters (29–132 �g/m3

of Harvard ultrafine concentrated ambient particles
(HUCAPS) for 2 weeks significantly impaired spa-
tial learning of both 3×TgAD mice, a murine model
of familial AD, and wild type mice [73]. Jang
et al. showed, on the other hand, that exposure
Neuro2A cells in the ex vivo hippocampus tissue
from 3×Tg-AD transgenic mice to fine PMs dose-
dependently activated poly(ADP-ribose) polymerase
(PARP-1), decreased NAD+, increased A� levels,
and activates glial cells, mostly in CA1 region [77].
Inhibition of PAR-1 activity reversed PM-induced
A� accumulation and glial activation, suggesting
that increased PARP-1 activity is responsible for
PM-induced AD pathological changes [77]. Human
beings are usually exposed to multiple environmental
agents simultaneously. Some of these agents exhibit
synergistic, whereas others show additive or antag-
onist effects when exposed to them simultaneously.
To test the potential synergistic effects between two
air pollutants, Liu et al. exposed wild type C57BL/6
mice to formaldehyde (0.155 mg/kg/day) and PM2.5
(0.193 mg/kg/day) alone or together for one week
[72]. They found that exposure to either compound
alone had little or no adverse effects on the mouse
brain. However, when mice were exposed to PM2.5
and formaldehyde simultaneously, AD-like patholog-
ical changes were observed, suggesting a synergistic
effect between these two compounds [72]. Using
GC-MS, LC-MS, western blotting, and immuno-
histochemistry techniques, Park et al. found that
exposure to PMs induces alterations in metabolic
pathways involved in redox homeostasis, neuroin-
flammation, and A� metabolism in the hippocampus,
olfactory bulb, cortex, and cerebellum, with the
changes in the hippocampus most significant [79].
Together, these studies suggest that PM exposure
can impair memory through multiple mechanisms,
including inducing oxidative stress, neuroinflamma-
tion, and brain A� accumulation.

TRAFFIC-RELATED EXPOSURE AND AD

Living near traffic roads is associated with expo-
sure to many biohazardous chemicals as well as noise.
Although exposure to particulate matters is one of the
major concerns associated with traffic-related expo-
sure, people living near roads are usually exposed
to multiple hazardous chemicals besides particulate
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matters, including nitrogen oxides, O3, heavy metals,
volatile organic compounds, and polycyclic aromatic
hydrocarbons [80]. Accumulated evidence suggests
that living near major traffic roads is associated with
increased brain structure and function changes that
may lead to neurodegenerative diseases such as AD
and Parkinson’s disease. Several large population
studies and animal studies have been conducted to
assess the effects of living near major traffic roads on
the incidence of neurodegenerative diseases includ-
ing AD [80–89]. In this section, we will specifically
address the potential risk associated with traffic-
related exposure in the development of AD as the
effects from traffic-related exposure represent com-
plex interactions between multiple air pollutants and
noise and have been studied as an independent entity
by many investigators.

Human population studies

Ranft et al. studied 399 women aged 68–79 years
who lived for more than 20 years at the same residen-
tial address to address the relation between long-term
exposure to traffic-related PMs and incidence of mild
cognitive impairment [81]. After adjusted for poten-
tial confounders using regression analysis, they found
distance (dose)-dependent effects of traffic-related
particulate matters on neuropsychological perfor-
mance [81]. Using a 15-year longitudinal human
study data and annual mean nitrogen oxide data from
the residential address of the participants as mark-
ers for traffic-related air pollution exposure, Oudin
et al. demonstrated that there were dose-dependent
increases in AD and vascular dementia in North-
ern Sweden [83]. By assessing two population-based
cohorts with approximate 2.2 million people who
resided in Ontario, Canada on April 1, 2001, Chen
et al. further showed that the closer people lived to
major traffic roads the higher the incidence of demen-
tia, but not Parkinson’s disease or multiple sclerosis,
in Ontario, Canada [80]. These studies demonstrate
a strong correlation between exposure to traffic-
related pollutants and cognitive decline, although
the exact disease-causing factors remain to be
identified.

Animal studies

A� accumulation and tau protein phosphorylation
in the hippocampus and frontal cortex are the patho-
logical features of AD. Levesque et al. found that
exposure of male Fisher 344 rats to diesel exhaust

(DE) at concentrations of 992, 311, 100, 35, or 0 �g
PM/m3 for 6 months (subchronically) led to increased
levels of inflammatory cytokine TNF� at high DE
concentrations in all of the brain regions except the
cerebellum [85]. No increase in IL-6 in any concen-
tration of DE tested was observed, although IL-1�
was increased in the groups treated with high con-
centrations of DE. They also showed that the levels
of A�42 and phosphorylated tau (pS199) were sig-
nificantly elevated at the higher concentrations of
DE (992 and 311 �g PM/m3) exposed groups in
both temporal and frontal lobes, suggesting that DE
exposure induces AD-like pathological changes [85].
Increased brain A� load has also been reported in
mice after exposure to diesel engine exhaust or traffic-
related air pollution [86, 87, 89]. Woodward et al.
reported that exposure of young (3 months) and mid-
dle (18 months) aged mice to nanoscale PM (nPM)
induced neurite atrophy, decreased myelin basic pro-
tein, and increased the amounts of Iba1, a microglial
marker, and TNF� mRNA in the hippocampal CA1
region of young mice [87]. The dentate gyrus region,
however, was unaffected [87]. Old control mice had
similar changes as nPM exposed young mice and
nPM exposure had no further effect on old mice,
probably due to an age-ceiling effect [87]. In a
recent study, the same group further showed that
nPM exposure increased the levels of 4HNE, a lipid
peroxidation product, and A� in lipid raft [89]. Treat-
ment of mouse neuroblastoma N2a cells with nPM
also caused dose-dependent increases in the levels
of nitrogen oxide, 4HNE, and A�. Treatment with
antioxidant N-acetyl-cysteine, on the other hand,
attenuated nPM-induced oxidative stress responses
and alterations of A�PP processing in lipid raft
[89]. Their results suggest that traffic-related air
pollutants promote neuronal pathological changes
through inducing oxidative damage to lipid rafts
[89].

INTERACTION BETWEEN GENE AND
ENVIRONMENTAL EXPOSURE IN THE
ONSET OF AD

It has been well documented that responses to envi-
ronmental toxicants vary depending on the races,
animal species, and even different individuals within
the same race or species, suggesting that genetic
background may affect the responses to environ-
mental agents [90]. Besides aging, accumulating
evidence indicates that genetic variations other than
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mutations in A�PP and PS1 or PS2 genes, which lead
to the development of early-onset (also called famil-
ial) AD, affect the susceptibility to the late-onset AD.
As of 2018, 21 of AD-related susceptibility genes
have been identified, which are involved in various
biological processes, including lipid homeostasis,
inflammation and immunity, endocytosis, apopto-
sis, and A� processing and clearance [90–96]. Of
these identified susceptibility genes, the APOE �4
allele is believed to have the strongest link with AD
[7]. Human apoE, existing in three isoforms (apoE2,
apoE3, and apoE4), encoded by three distinct alle-
les �2, �3, and �4 is a major carrier of lipids and
cholesterol. Both epidemiology and animal studies
have shown that the APOE �4 allele, which is carried
by approximately 15% of the population worldwide
[4–7], is a major genetic risk factor for AD [4, 7, 8,
11–16]. Nonetheless, not all of the APOE �4 carriers,
even in old ages, develop AD, suggesting that other
risk factors, including environmental exposure, must
play a role. It is believed that AD may develop as a
consequence of complex interactions between aging,
genetic risk factors, and environmental risk factors.In
this section, we will further discuss such interactions
in the development of AD, focusing on the APOE �4
allele.

Human studies

Mexico City is heavily polluted with PM2.5 and
O3. Several studies have shown that Mexico City res-
idents, including infants, children, and young adults,
exhibit increased brain oxidative stress, inflamma-
tion, and AD-like pathological changes as well as
cognitive deficits [70, 97–101]. Importantly, it has
been reported that APOE �4 carriers have higher lev-
els of these pathophysiological changes compared
to non-APOE �4 carriers [97–101]. Calderon-
Garciduenas et al. examined the brain metabolic
rations, short-term memory, and IQ for 50 Mexico
City residents with an average age of 13.4 years who
carry either APOE �3 and APOE �4 allele [98]. They
found that, compared to APOE �3 children, APOE �4
children had a decreased N-acetylaspartate/creatine
ratios in the right frontal white matter and decrements
on attention, short-term memory, and below-average
scores in Verbal and Full-Scale IQ [98]. The same
group of investigators also showed that infants, chil-
dren, and young adults living in metropolitan Mexico
City have increased cortical tau pretangles, neu-
rofibrillary tangles, and amyloid in substantia nigra,
auditory, oculomotor, trigeminal, and autonomic sys-

tems [101]. However, APOE �4 carriers have 23.6
times higher odds of neurofibrillary tangle stage V
compared to non-APOE �4 carriers who have simi-
lar cumulative PM2.5 exposure and age [101]. This
group of investigators also showed that APOE �4
heterozygous children (APOE �4/�3) have decreased
attention and short-tern memory subscale and below-
average scores in verbal, performance, and full-scale
IQ compared to APOE �3/�3 carriers [99]. Moreover,
they showed that female heterozygous APOE �4 car-
riers with 75–94% of normal BMI are at the highest
risk of severe cognitive deficits [99].

Several large population studies have also indi-
cated that APOE �4 carriers are more sensitive
than non-APOE �4 carriers to environmental
exposure-induced cognitive decline [29, 102–104].
By assessing 5,419 participants with an average age
of 76.8 years in the US, Cleary et al. reported that
exposure to low-level of O3 was associated with
cognitive decline in the elderly and that individuals
harboring one or more APOE �4 alleles exhibited
a faster rate of cognitive decline compared to non-
APOE �4 carriers [29]. They also found that the
deleterious association of O3 was confined to individ-
uals with normal cognition who eventually became
cognitively impaired [29]. Cacciottolo et al. reported
that older women from the Women’s Health Initiative
Memory Study (WHIMS) who resided in places with
fine PM exceeding EPA standards had increased risk
of developing global cognitive decline and all-cause
dementia with stronger adverse effects in APOE �4
carriers [102]. They further showed that exposure of
female EFAD transgenic mice (5×FAD+/–/human
APOE �3 or �4+/+) to urban nanosized PM (nPM)
for 15 weeks significantly increased cerebral A� load,
which was worsened by APOE �4.Their data suggest
strongly that nPM exposure promotes AD patholog-
ical changes in the aging brain in women and that
APOE �4 further enhances such sensitivity [102].
Alemany et al. reported that the associations between
behavior/memory performance (behavior problem
scores, caudate volume, and cognitive performance
trajectories) and outdoor concentrations of polycyclic
aromatic hydrocarbons and nitrogen dioxide were
stronger in/limited to APOE �4 carriers [103]. A 6-
year follow up study with 4,821 participants showed
that high ambient concentrations of PM2.5, NO2, or
PM10 were associated with a rapid decline of cogni-
tive function and that the cognitive decline was faster
in APOE �4 carriers than in non-APOE �4 carriers in
responding to all of these pollutants [104]. Together,
the evidence presented in these studies supports
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a synergistic effect between APOE �4 and envi-
ronmental exposure in promoting memory decline
or AD.

It should be mentioned that not all of the stud-
ies support such a synergistic effect. Oudin et al.
reported that, although air pollution was associ-
ated with dementia incidence in a longitudinal study
conducted in Northern Sweden, APOE �4 has no
significant effect on the outcome [105]. The dis-
crepancies between these studies suggest that other
factors, genetic and/or environmental, are involved
as well. It should also be pointed out that none
of these epidemiology studies has addressed sex-
dependent interactions between APOE genotype and
environmental exposure in AD pathophysiology. It
is unclear whether APOE �4 enhances the sensitiv-
ity to the environmental pollutants-induced memory
impairment primarily in female APOE �4 carri-
ers or in both male and female APOE �4 carriers.
More studies are required to address this important
issue.

Animal studies

Humanized apoE4 and apoE3 mice, also known
as apoE3 or apoE4 targeted replacement (TR) mice,
in which the endogenous murine APOE gene is
replaced with the human APOE �4 or APOE �3
(common human form) gene, respectively [106], have
been widely used to study the mechanisms by which
APOE �4 modulates AD pathophysiology. These
mice have also been used to study the interactions
between genetic risk factor APOE �4 and dietary
or environmental exposure in the development of
AD [107–119], including particulate matters and O3
exposure [32, 102]. Engstrom et al. reported that
exposure to lead through drinking water for 12 weeks
impaired memory in both apoE4 and apoE3 female
mice but memory loss occurred earlier in apoE4
than in apoE3 mice [110]. ApoE4 mice, both male
and female, are also more sensitive to cadmium-
induced memory loss than apoE3 mice [119]. As in
humans, the APOE �4 allele mainly affects the mem-
ory of female mice under unchallenged conditions
[8, 120–122]. Consequently, many studies have been
conducted using female apoE4 TR mice only. Cac-
ciottolo et al. reported that exposure of female EFAD
(5XFAD+/–/human APOE �3 or �4+/+) transgenic
mice to nanosized PM induced more dramatic AD-
like pathological changes in the brain in apoE4 mice
than it did in apoE3 mice [102].

Although some studies have shown that apoE
�4 TR mice are more sensitive to environmental
factors-induced memory loss than apoE �3 TR mice,
opposite observations have also been reported [32,
109, 111]. Peris-Sampedro et al. found that expo-
sure to an organophosphate pesticide chlorpyrifos
impaired spatial memory in male apoE3, not male
apoE4, TR mice [109]. Using different exposure
strategy, the same group further showed that postna-
tal chlorpyrifos exposure impaired spatial memory
of apoE3 but not apoE4 female mice [111]. In a
recent study, we tested the hypothesis that O3 expo-
sure synergizes with the genetic risk factor APOE
�4 and aging leading to AD, using young and old
male apoE4 and apoE3TR mice as men are more
likely exposed to high levels of O3 via working envi-
ronments and few studies have addressed APOE �4
effects on males [32]. We found, surprisingly, that O3
exposure impaired memory only in old apoE3 male
mice, while old apoE4 or young apoE3 and apoE4
male mice were spared [32]. Associated with memory
loss, old apoE3 male mice exhibited increased pro-
tein oxidative modifications and neuroinflammation
upon O3 exposure compared to other groups [32]. In
contrast to apoE3 male mice, old apoE4 male mice
have significantly increased expression/activities of
several enzymes involved in antioxidant defense,
diminished protein oxidative modifications, and neu-
roinflammation upon O3 exposure [32]. Together,
these findings highlight the complexity of the
interactions between APOE genotype, age, and envi-
ronmental exposure in AD pathophysiology. These
findings also suggest that the interactions between
gene-environment in AD pathophysiology may be
sex-dependent.

SEX, ENVIRONMENTAL EXPOSURE,
APOE �4, AND AD

Of the 5.6 million people age 65 or older who
suffer from AD in the US, 3.5 million are women
and 2.1 are men, indicating that the prevalence
of AD is higher in women than in men [2, 14,
123–133]. The mechanism underlying increased
susceptibility of old women to AD is unknown,
although a loss of estrogen in menopause [126, 129,
130] and increased oxidative stress [134–140] is
believed to contribute. Studies have shown that males
and females respond differently to environmental
pollutant-induced neurodevelopment and cognitive
impairment [74, 141–146]. Moreover, it has been
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reported that APOE �4 differentially affects the sus-
ceptibility of males and females to environmental
pollutant-induced memory decline [90, 110, 119,
143, 147]. It should be pointed out that controversial
data have been reported. Some studies showed that
APOE �4 enhanced the sensitivity of females to envi-
ronmental challenges, whereas other studies showed
an opposite trend that APOE �4 males were more sen-
sitive than APOE �4 females [110, 119]. Nonetheless,
how sex affects the susceptibility to AD and how sex
interacts with the APOE �4 gene and environmental
risk factors leading to AD remains largely unknown.
In this section, we summarize a few published stud-
ies conducted in humans and animals, which address
sex-related responses to environmental exposure in
terms of neurodevelopment and cognitive function.

Although it has been long recognized that males
and females respond differently to many chal-
lenges, very few studies have been conducted to
dissect sex-dependent differences in response to envi-
ronmental pollutant-induced neuropathophysiology.
Prenatal exposure has been increasingly recognized
to affect later-life susceptibility to some diseases.
To explore the potential linkage between prenatal
exposure to environmental pollutants and later life
memory decline, Cowell et al. examined 258 mother-
child dyads enrolled in a Boston, Massachusetts
pregnancy cohort [142]. They found that, after strat-
ification, the associations between prenatal exposure
to traffic-related black carbon and memory scores
were stronger in boys than in girls, although no sig-
nificant effect was detected on learning and memory
with non-stratified data [142]. Chiu et al. further
showed that the responses to prenatal particulate
exposure-induced neurodevelopment differ between
boys and girls, depending on the time windows of
prenatal exposure [146]. After adjusting for mater-
nal age, education, race, and smoking status, they
found that exposure to higher levels of PM2.5 at 31–38
weeks was associated with lower IQ, at 20–26 weeks
with increased omission errors, at 32–36 weeks with
slower hit reaction time, and at 22–40 weeks with
increased hit reaction time standard error among
boys [146]. On the other hand, higher PM2.5 expo-
sure at 18–26 weeks was associated with reduced
visual memory, and at 12–20 weeks with reduced
general memory in girls [146]. Lertxundi et al. also
found that prenatal exposure to PM2.5 and NO2 was
negatively correlated with the neurological devel-
opment of 4–6 years old children, especially boys
[145]. In a recent study, we examined whether expo-
sure to ambient fine particles (PM2.5) at residential

locations affects intelligence quotient (IQ) during
pre-/early- adolescence (ages 9–11) and emerging
adulthood (ages 18–20) in a demographically-diverse
population residing in Southern California [148].
We found that increased ambient PM2.5 levels were
associated with decreased IQ scores, especially the
Performance IQ (PIQ) and that the average PIQ
score decreased by 3.08 points for each inter-quartile
(7.73 �g/m3) increase in one-year PM2.5 preced-
ing each assessment [148]. Interestingly, we found
that the adverse effect was 89% stronger in males,
compared to their counterparts [148]. Animal studies
also showed that prenatal exposure to concentrated
ambient ultrafine particles impaired the fixed interval
schedule-controlled performance of male mice, while
adult exposure impaired fixed interval of female
mice, although concentrated ambient ultrafine par-
ticle exposure impaired short-term memory of both
sexes [141]. Interestingly, it has been reported that
the treatment of rats with estradiol prevents O3-
induced brain oxidative stress and social recognition
impairment [35, 149], supporting the notion that a
decrease in estrogen level may underling increased
susceptibility of old females to O3-induced AD-like
pathophysiology.

Although it has been well documented that female
APOE �4 carriers have the highest risk of acquir-
ing AD, how APOE genotype interacts with female
sex leading to increased susceptibility to AD remains
largely unknown. A few published studies also sug-
gest that APOE �4 may differentially affect the
susceptibility of males and females to environmen-
tal pollutant-induced memory decline, although the
underlying mechanism is unknown [90, 110, 119,
143, 147]. Some studies indicate that APOE �4
enhances the sensitivity of females to environmen-
tal challenges [110], whereas other studies show an
opposite trend [119]. Lead (Pb) is an important traffic-
related environmental pollutant. It has been reported
that Pb exposure impairs spatial working memory,
assessed by novel object recognition test, in both male
and female human APOE �3 or APOE �4 knock-in
(ApoE �4 and ApoE �3 KI) mice [110]. ApoE �4
KI mice, however, show memory impairment ear-
lier than ApoE �3 KI mice, with female ApoE �4 KI
mice manifesting memory deficit the earliest [110].
Cadmium (Cd) is another important environmental
pollutant and a component of particulate matter. Stud-
ies have shown that exposure of ApoE �4 KI and
ApoE �3 KI mice, both male and female, to Cd
through drinking water impairs their spatial learn-
ing and memory function [119]. The memory deficits
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manifested earlier in ApoE �4 KI mice than in ApoE
�3 KI mice within the same sex [119]. Importantly,
they showed that male ApoE �3 and ApoE �4 KI
mice display memory deficits earlier than their cor-
responding female KI mice, suggesting that APOE
�4 affects the sensitivity of male mice to Cd-induced
memory more than it does to female mice [119].
Nonetheless, more studies are warranted to dissect
the complex interactions between APOE genotype,
sex, and environmental exposure in the development
of AD.

CONCLUSION

The etiology of LOAD is unknown. Accumulating
evidence suggests that LOAD is caused most likely
through complex interactions between genetic risk
factors, environmental risk factors, and female sex
plus aging. Both epidemiology and animal studies
have shown that exposure to O3 and PM is associated
with cognitive decline; whether these air pollutants
arethe culprit for AD, however, remains to be deter-
mined. Moreover, how female sex, APOE �4, aging,
and environmental risk factors interact leading to
AD remains largely unknown and warrens further
investigation. Understanding the complex interac-
tions between these risk factors is a foundation for
the development of strategies for the prevention and
treatment of this devastating disease.
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