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A B S T R A C T

Background: Emerging data suggests PM2.5 (particulate matter with aerodynamic diameter < 2.5 μm) may be
associated with both earlier declines in episodic memory (EM) and increased depressive symptoms in older
adults. Although late-life depressive symptoms are associated with EM, no longitudinal studies have examined
the inter-relationship among PM2.5, depressive symptoms and EM.
Methods: Older women (n = 2,202; aged 67–83 in 1999) enrolled in the Women’s Health Initiative Study of
Cognitive Aging completed up to eight annual assessments of depressive symptoms (15-item Geriatric
Depression Scale) and EM (California Verbal Learning Test). A nationwide spatiotemporal model (1999–2010)
was used to estimate ambient PM2.5 exposure at residential locations. Univariate and bivariate structural
equation models (SEMs) for latent-change scores were used to examine how 3-year average PM2.5 preceding each
assessment affects the temporal dynamics and bidirectional relations of annual changes in depressive symptoms
and EM.
Results: In univariate SEMs, one inter-quartile (4.04 μg/m3) increment of 3-year PM2.5 was significantly
(p < 0.05) associated with accelerated declines in verbal learning (List A trials 1–3: β = −1.48) and free-recall
memory (short-delay: β = −1.43; long-delay: β = −1.11), but not with change in depressive symptoms
(β = 0.12; p = 0.71). In bivariate SEMs, significant associations were observed between PM2.5 and accelerated
declines in EM measures (β = −1.44 to −0.99; p < 0.05) and between EM performance and changes in de-
pressive symptoms (β = −0.08 to −0.05; p < 0.05), with significant indirect PM2.5 effects on changes in de-
pressive symptoms (β = 0.08–0.10; p < 0.05). These findings were robust with adjustment for multiple de-
mographic, lifestyle, and clinical factors, and remained after excluding subjects with dementia or mild cognitive
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impairment. No associations were found between PM2.5 and change in depressive symptoms or depressive
symptoms and subsequent EM decline.
Conclusions: Findings suggest that PM2.5 neurotoxicity may damage brain areas implicated in EM, followed by
manifestation of depressive symptoms. Our data did not support depressive symptoms as the neuropsychological
mediator of accelerated brain aging associated with PM2.5 exposure.

1. Introduction

Long-term exposure to particulate air pollutants represents a novel
environmental risk factor of accelerated brain aging (The Lancet
Neurology, 2018). An increasing number of epidemiologic studies have
reported associations between late-life exposure to ambient PM2.5

(particulate matter with aerodynamic diameter < 2.5 μm) and in-
creased risks for cognitive decline (Cacciottolo et al., 2017; Tonne et al.,
2014; Weuve et al., 2012) and dementia (Cacciottolo et al., 2017; Carey
et al., 2018; Chen et al., 2017a, 2017b; Jung et al., 2015; Oudin et al.,
2018). Recent longitudinal data also suggest PM2.5 exposure may in-
crease the risk of depression in adults (Kim et al., 2016). Biologically
plausible mechanisms underlying these neurotoxic effects on brain
aging may include particle-induced neuroinflammation, oxidative
stress, cerebral vascular damage, and neurodegeneration via direct or
indirect pathways. For instance, air pollution exposure can trigger
systemic or peripheral inflammation that affects the central nervous
system and neurobiology in the brain. Experimental data also showed
that airborne engineered particles may translocate to the brain, possibly
resulting in direct damage whereby astroglia, brain capillaries, and
microglia respond with chronic activation, inflammation, and oxidative
stress (Béjot et al., 2018; Block and Calderón-Garcidueñas, 2009).

A large body of literature has documented the close link between
depressive symptoms, accelerated brain aging, and dementia (Byers and
Yaffe, 2011). Earlier prospective cohort studies found an increased risk
for cognitive impairment or dementia associated with prior depression
or depressive symptoms in late-life (Barnes et al., 2006, 2012; Ownby
et al., 2006; Saczynski et al., 2010; Wilson et al., 2002; Yaffe et al.,
1999). More recent longitudinal analyses showed that late-life depres-
sive symptoms are more likely to occur as the prodromal neu-
ropsychiatric manifestation of Alzheimer’s disease and related de-
mentias (ADRD; Steffens, 2017). Even after accounting for
neuropathological measures of ADRD (Wilson et al., 2014), depressive
symptoms are still associated with cognitive decline in the elderly, al-
though the exact directionality of this interrelation remains unclear.
The same neural mechanisms may underlie both depressive symptoms
and memory impairment (Disner et al., 2011). Depressive symptoms
may lead to declines in episodic memory (Zahodne et al., 2014), which
tends to decline with normal aging and represent one of the cognitive
domains with early decline detectable in preclinical Alzheimer’s disease
(Gallagher and Koh, 2011). Neuroimaging studies have shown that
hippocampal atrophy is elevated in individuals with untreated de-
pression (Sheline et al., 2003), and the hippocampal networks play a
key role in episodic memory. In contrast, other studies also found that
poor episodic memory may actually lead to increased depressive
symptoms over time (Jajodia and Borders, 2011; Vinkers et al., 2004),
lending support for the opposite direction of coupling effect. An in-
dividual’s self-awareness of their episodic memory impairment could
lead to a psychological response of increased depression because they
know their recollection of particular life experiences may fade or ac-
tivities they used to enjoy (e.g., reading) become difficult (Ganguli,
2009). They also may experience increased concern about the future

and developing dementia.
Extant knowledge of cognitive neurosciences of brain aging there-

fore raises at least two possibilities about the longitudinal associations
linking air pollution exposure with these two phenotypes of brain
aging. First, depressive symptoms in late life, if directly affected by air
pollution (e.g., PM2.5), may act as a neuropsychological mediator of
exposure-associated cognitive impairment. Second, air pollution may
indirectly lead to increased depressive symptoms via declines in epi-
sodic memory associated with exposure. To the best of our knowledge,
no studies have examined whether and how air pollution exposure af-
fects the temporal dynamics between depressive symptoms and epi-
sodic memory in late life. Understanding these complex associations is
important from the public health perspectives, because each of the
suggested pathways, if substantiated by empirical data, may point to
different targets for primary prevention versus secondary interventions
towards improving brain health of older people. Long-term studies with
multiple assessments of these two phenotypes are needed to address
whether air pollution exposures relate to the bidirectional changes in
these two phenotypes of brain aging. In this longitudinal study we ex-
amined how exposure to PM2.5 affects the temporal dynamics and
possibly bidirectional relation between episodic memory and depres-
sive symptoms over time in a community-dwelling cohort of older
women assessed annually from 1999 to 2010.

2. Materials and methods

2.1. Study population

This longitudinal cohort study included 2,202 community-dwelling
older women (baseline age 66–83 years old) without dementia in 1999
when enrolled in the Women’s Health Initiative Study of Cognitive
Aging (WHISCA; Resnick et al., 2004), an ancillary study to the Wo-
men’s Health Initiative Memory Study (WHIMS; Shumaker et al., 1998).
The WHIMS (N = 7,479) began in 1996 and was an ancillary study to
the Women’s Health Initiative (WHI) Clinical Trial of Hormone Therapy
(The Women's Health Initiative Study Group, 1998). Between 1999 and
2010, WHISCA participants (n = 2304) completed annual neu-
ropsychological assessments, including measures of depressive symp-
toms and episodic memory. Excluded from the present study were 102
women with missing data on relevant covariates, resulting in a final
sample of 2,202.

2.2. Assessment of depressive symptoms

Depressive symptoms were assessed at baseline and at each annual
follow-up (up to 8 assessments) using the 15-item Geriatric Depression
Scale (GDS-15) (Yesavage and Sheikh, 1986). The GDS-15 is a reliable
and valid instrument, commonly used to assess depressive symptoms in
older adults (Mitchell et al., 2010). Scores were standardized on a T-
score metric (Mean = 50; SD = 10), based on the baseline GDS-15
mean and standard deviation. Higher scores reflect greater depression
symptoms.
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2.3. Assessment of verbal episodic memory

Verbal episodic memory was assessed using a modified version of
the California Verbal Learning Test (CVLT) (Delis et al., 1987). Parti-
cipants were read a list of 16-words and instructed to repeat as many of
the words from the list as they could. This procedure was repeated two
more times. Only three learning trials were administered in WHISCA
instead of the standard five trials. Learning/immediate recall ability
was measured by the total number of words correctly recalled over the
three learning trials (trials 1–3). The participant was then asked to
freely recall all of the words that they could from the first list (short-
delay free recall). Approximately 20-minutes after the short-delay free
recall trial, the participants were asked again to freely recall as many
words from the initial list of words (long-delay free recall). Performance
on each measure was also standardized on a T-score metric based on the
baseline mean and standard deviation.

2.4. Assessment of ambient PM2.5

In this study, we focused on PM2.5, because its associations with
cognitive deficits in both human studies (Clifford et al., 2016) and
animal models (Fonken et al., 2011; Ku et al., 2017) were more es-
tablished than the other regional air pollutants. Briefly, participants
residential addresses were prospectively collected at each annual
WHISCA assessment and geocoded using standardized procedures
(Whitsel et al., 2004). Using the Bayesian Maximum Entropy (BME)
method (Christakos, 2000; Christakos et al., 2012), we constructed
spatiotemporal models that are a function of space and time to generate
individual-level, residence-specific PM2.5 estimates. The BME integrates
daily observed PM2.5 data obtained from nationwide monitoring system
of the U.S. Environmental Protection Agency Air Quality System, along
with the output of chemical transport models that fully characterize the
local emission sources, meteorology, chemicals transformations and
transport of pollutants (Reyes et al., 2017). Estimates of daily PM2.5

exposures were statistically cross-validated with a 10-fold estimations
analysis. The results showed that the BME estimates of PM2.5 exposure
correlated well with EPA recorded concentrations (average Pearson’s
R2 = 0.70). The resulting exposure estimates were then aggregated to
represent the average PM2.5 exposure 3-years preceding each WHISCA
assessment. In all analyses PM2.5 exposure was scaled to the inter-
quartile range estimated for the baseline WHISCA assessment (4.04 μg/
m3).

2.5. Classification of mild cognitive impairment and dementia

Mild cognitive impairment (MCI) was classified using the Peterson’s
criteria (Petersen et al., 1994); and all-cause dementia was defined by
the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edi-
tion (DSM-4) (American Psychiatric Association, 1994) criteria. From
1999 to 2008 annual screenings were conducted in 49 WHIMS sites
(including satellite clinics) by centrally-trained and regularly-certified
interviewers administering the Modified Mini-Mental State (3MS)
(Teng and Chui, 1987). Women who screened positive according to
age-/education-adjusted 3MS were administered extensive neu-
ropsychological testing (Morris et al., 1989) and behavioral symptoms/
function assessment. Beginning in 2008, a validated battery of tests was
administered to participants annually by telephone using the Telephone
Interview for Cognitive Status-modified (TICSm) (Rapp et al., 2012).
For women who screened positive during telephone interviews (i.e.,
TICSm < 31), the standardized Dementia Questionnaire (Kawas et al.,

1994) was administered by telephone to knowledgeable informants to
assess the participant’s dementia‐related cognitive and behavioral
changes and relevant medical history. All relevant assessments and
information were submitted to a central adjudication committee for
final classification, based on the DSM-IV. Data on MCI and dementia
status were available up to December 2015.

2.6. Relevant covariate data

A structured questionnaire was administered at WHIMS baseline to
gather information on the time independent covariates of demographics
(age, race/ethnicity), geographic region of residence (Northeast, South,
Midwest, and West), socioeconomic status (education; family income),
lifestyle factors (smoking; alcohol use; physical activities), and clinical
characteristics, including self-reported postmenopausal hormone
treatment ever, history of cardiovascular disease (including previous
coronary heart, stroke, or transient ischemic attack), hypertension
(defined as elevated blood pressure or use of antihypertensive medi-
cation), and diabetes mellitus (defined as physician diagnosis plus oral
medications, or insulin therapy). Good reliability and validity of the
self-reported medical histories and the physical measures have been
previously documented (Heckbert et al., 2004).

2.7. Statistical analysis

Structural equation models (SEMs) for latent change scores (LCSs)
(McArdle, 2001) were constructed to examine the complex associations
between PM2.5 exposure and temporal changes in the two inter-related
neuropsychological processes (episodic memory; depressive symptoms)
over the WHISCA study period. The SEMs with LCS are advantageous
because they allows for the modeling of dynamic change between two
variables from one time point to the next. The LCS approach estimates
dynamic annual change by combining features of latent growth curve
models, which determine the systematic change over time (Meredith
and Tisak, 1990), and autoregressive cross-lagged regressions, which
estimate the proportional change over time (Selig and Little, 2012).
Because women were assessed annually, we examined change over one-
year intervals with the WHISCA inception time denoted as the baseline.
The supplemental methods section provides a more detailed description
of our analytic approaches.

2.7.1. Univariate latent change score models
To examine the association between PM2.5 exposure and annual

change in each neuropsychological process we first constructed uni-
variate LCS models separately for episodic memory and depressive
symptoms (see Fig. 1 for a depiction of the full univariate model). For
episodic memory, individual-specific performance at baseline (intem,i)
was estimated along with between-individual variability in initial per-
formance (σ2intem). The equation to estimate annual individual-specific
change in episodic memory for individual i at timepoint t was written
as:

= + +em slp lem PM2.5 . ,i t i i t i t, em em, em , PM2.5on em , (1)

where Δemi,t denotes the estimated individual-specific annual change
in episodic memory.

Individual-specific estimate of systematic linear change is re-
presented by the slpem,I parameter. The effect estimate, denoted by αem,
linking the latent slope factor (slpem,i) to annual change in episodic
memory (Δemi,t), was fixed to equal 1.0. Proportional change, denoted
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by βem, is a fixed-effect estimate that quantifies the extent to which
change from one time to the next is dependent on episodic memory
performance at the previous year (denoted by lemi,t). The term γPM2.5 on

Δem denotes the effect of time-varying PM2.5 exposure (PM2.5,i,t) on
change in episodic memory performance. Error variance in CVLT per-
formance (resem,i) was constrained to be equal across the study period.
To account for the form effect due to the use of an alternative CVLT
form at the second and third follow-up assessment (Resnick et al.,
2009), we added a latent factor indicating the form effect, with the
corresponding path set to 0 for the standard CVLT or 1 for the alter-
native form. To estimate the PM2.5 exposure effect on each measure of

episodic memory in univariate SEM, we adjusted for the following
covariates: age at the WHISCA baseline, race/ethnicity, geographic
region of residence, education, household income, lifestyle factors
(smoking; alcohol use; physical activities), and clinical characteristics
(any prior hormone use ever, hypercholesterolemia, hypertension,
diabetes, and history of cardiovascular disease). Each measure of the
CVLT (trials 1–3, short-delay free recall, long-delay free recall) was
modeled separately. Analogous equations can be written for univariate
SEM to estimate the PM2.5 exposure effect on change of depressive
symptoms. All covariates were assessed at the WHIMS baseline with the
exception of age which was the baseline WHISCA age.

Fig. 1. Simplified depiction of the univariate latent change score structural equation model estimating the effect of preceding 3-year average PM2.5 exposure on
change in episodic memory performance. Intem,i = estimate of episodic memory (em) as measured by CVLT performance at WHISCA baseline for individual i.
slpem,i = estimate of systematic linear change in episodic memory (em) for individual I as measured by CVLT performance. PM2.5,i,t = estimate of average daily
particulate matter exposure for individual i, for the three-years prior to WHISCA assessment at time t. lemi,t = estimate of latent episodic memory (em) for individual
i at time t as measured by CVLT performance. Δemi,t = estimate of latent change in episodic memory (em) for individual i at time t as measured by CVLT perfor-
mance. Form = estimate of latent effect of the CVLT form. αem = the path coefficient from estimate of systematic linear change to change in episodic memory latent
variable. This coefficient was constrained to equal 1.0 in all models. βem = the effect of proportional change in episodic memory. γPM2.5 on Δem = the effect of PM2.5

exposure on change in episodic memory. σ2int em = the variance in individual specific estimates of CVLT performance at the WHISCA baseline. σ2slpem = the
variance in individual specific estimates of linear change in CVLT performance. resem,i = the residual of CVLT performance for individual i. σ2

em = the unexplained
residual variance in CVLT performance. Bolded pathways represent the indirect effects estimated in each model. Only the baseline assessment (lemi,t=0) is regressed
onto the intercept factor (INTem,i).
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Fig. 2. (A). Simplified depiction of the bi-
variate latent score structural equation
model estimating the indirect effect of
PM2.5 exposure on depressive symptoms.
(B). Simplified depiction of the bivariate
latent change score structural equation
model estimating the indirect effect of
PM2.5 exposure on change in episodic
memory performance. Intem,i = estimate of
episodic memory (em) at WHISCA baseline
for individual i as measured by CVLT per-
formance. slpem,i = estimate of systematic
linear change in episodic memory (em) for
individual i as measured by CVLT perfor-
mance. PM2.5,i,t = estimate of average
daily particulate matter exposure for in-
dividual i, for the three-years prior to
WHISCA assessment at time t.
lemi,t = estimate of latent episodic
memory performance for individual i at
time t as measured by CVLT performance.
ldepi,t = estimate of latent depressive
symptoms for individual i at time t as
measured by the GDS-15.
Δemi,t = estimate of latent change in epi-
sodic memory (em) for individual i at time
t as measured by CVLT performance.
Δdepi,t = estimate of latent change in de-
pressive symptoms for individual i at time t
as measured by the GDS-15. Bolded path-
ways represent the indirect effects esti-
mated in each model. Note: The full dia-
gram is presented in Supplemental
Materials, Figs. S2 and S3. Raw scores,
residual variances, change parameter la-
bels were omitted to simplify the diagram.
One sided arrows without labels in the
diagram are fixed to equal 1.0. Covariates
include the following variables: age at
WHISCA baseline, region of residence,
education, race/ethnicity, income, hor-
mone use ever, high cholesterol, diabetes,
smoking, alcohol use. Only the baseline
assessments (lemi,t=0 or ldepi,t=0) are re-
gressed onto the intercept factors (INTem,I

or INTdep,i,t).
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2.7.2. Bivariate latent change score models.
Bivariate LCS models allow us to examine how the level of one

variable was associated with subsequent changes in a second variable.
We employed bivariate LCS models to address two questions: (1)
whether there was an indirect association between PM2.5 exposure and
changes in depressive symptoms that may be mediated by episodic

memory decline; or (2) whether there was an indirect PM2.5 exposure
effect on declines in episodic memory mediated through increases in
depressive symptoms associated with exposure.

Fig. 2 depicts a simplified depiction of the two bivariate hypotheses
(Figs. S1 and S2 in Supplemental Materials present the full model es-
timated). These bivariate SEMs followed similar modeling structures as

Table 1
Comparison of estimated PM2.5 exposure by baseline cohort characteristics (N = 2,202).

Distribution of time-varying 3-year averagePM2.5
a

Population characteristics N Mean SD 25th Median 75th pb

Overall 2202 12.63 2.60 10.74 12.07 14.23
Region of residence < 0.001

Northeast 462 12.25 1.36 11.14 12.20 13.27
South 319 12.23 1.77 10.56 11.87 14.04
Midwest 856 12.91 2.44 10.68 12.38 15.39
West 565 12.75 3.70 10.46 11.70 14.32

Race/ethnicity < 0.001
African-American 136 15.05 2.38 13.58 14.69 16.38
Hispanic white 26 13.29 2.89 11.11 12.29 14.36
Non-hispanic white 1983 12.43 2.49 10.66 11.87 13.94
Other or missing 57 13.56 3.28 11.38 12.84 15.52

Education 0.027
Less than high school 107 12.67 2.58 10.89 11.96 14.31
High school 469 12.34 2.28 10.63 11.75 13.63
More than high school 1626 12.71 2.68 10.76 12.12 14.32

Income (in USD) 0.004
< 9,999 483 12.38 2.56 10.61 11.73 14.21
10,000–34,999 678 12.57 2.54 10.67 12.09 14.18
35,000–49,999 469 12.59 2.56 10.68 11.96 14.01
50,000–74,999 308 12.88 2.69 11.05 12.28 14.20
75,000 or more 194 13.21 2.79 10.96 12.61 15.11
Don't know 70 12.53 2.47 10.75 12.20 13.87

Lifestyle
Smoking status 0.276

Never smoked 1214 12.66 2.62 10.73 12.04 14.31
Past smoker 862 12.65 2.55 10.82 12.16 14.15
Current smoker 126 12.27 2.70 10.46 11.51 14.09

Alcohol use 0.031
Non-drinker 271 13.07 2.75 10.66 12.50 15.07
Past drinker 400 12.61 2.56 10.73 12.03 14.38
Less than 1 drink per day 1263 12.55 2.56 10.73 12.00 14.01
More than 1 drink per day 268 12.61 2.64 10.89 11.97 14.15

Moderate or strenuous activities ≥ 20 min 0.294
No activity 1260 12.67 2.66 10.73 12.15 14.39
Some activity 116 12.77 2.43 10.83 12.07 14.61
2–4 episodes/week 446 12.68 2.53 10.82 12.04 14.23
≥4 episodes/week 380 12.40 2.52 10.66 11.83 13.66

Physical Health
Hypertension 0.321

No 1385 12.59 2.59 10.69 12.01 14.22
Yes 817 12.70 2.60 10.78 12.16 14.26

Treated hypercholesterolemia 0.267
No 1817 12.60 2.60 10.73 12.06 14.22
Yes 385 12.76 2.57 10.82 12.16 14.27

Diabetes mellitus 0.593
No 2078 12.64 2.61 10.73 12.07 14.26
Yes 124 12.51 2.44 10.87 12.12 13.60

Cardiovascular disease 0.166
No 1847 12.60 2.59 10.73 12.03 14.19
Yes 355 12.81 2.66 10.80 12.33 14.75

Prior hormone therapy 0.500
No 1189 12.66 2.52 10.73 12.13 14.20
Yes 1013 12.59 2.68 10.76 12.00 14.28

a PM2.5 represents the distribution of the individual-level summary of all time-varying 3-year exposures aggregated from the daily exposure levels estimated at
each residential location using the spatiotemporal model.

b p values estimated from ANOVA F-tests or t-tests.
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used in our previous work studying the directionality of the association
between symptoms of anxiety and depression with cognitive perfor-
mance (Petkus et al., 2019). In the first bivariate model the equation to
estimate individual-specific change in depressive symptoms was written
as:

= + +

+

dep slp ldep

PM2.5 lem .
i t i i t

i t i t

, dep dep, dep , PM2.5on dep

, lemon dep , (2)

In bivariate models, the change in depressive symptoms (Δdepi,t)
was a function of linear systematic change (slpdep,i), proportional
change (βdep), the effect of time-varying PM2.5 exposure (γPM2.5 on

Δdem), and the effect of episodic memory performance on subsequent
changes in depressive symptoms (γlem on Δdep).

Following SEM path tracing conventions, the specific indirect effect
of PM2.5 exposure on changes in depressive symptoms was estimated by
multiplying the two estimated coupling parameters as depicted in the
following equation:

= ………Indirect .PM2.5 on dep PM2.5 on em lem\; on dep (3)

The significance of the indirect effect was estimated by bootstrap
calculation of asymmetric confidence intervals (MacKinnon et al.,
2002). The significant indirect effect was supported if the confidence
interval did not include zero. All bivariate LCS models were adjusted for
the same set of covariates as described in the univariate LCS models.
Analogous equations can be written to examine whether there was an
indirect effect of PM2.5 exposure on changes in episodic memory that
was mediated by changes in depressive symptoms.

We carried out additional analyses to evaluate the robustness of our
findings. To explore whether any observed associations with PM2.5

could be explained by the underlying risk for clinically significant
neurocognitive disorders, we repeated the analyses after excluding in-
dividuals who developed incident dementia or mild cognitive impair-
ment by 2015. When examining the indirect effect of PM2.5 exposure on
changes in CVLT Trials 1–3 performance, the SEMs would not converge
after excluding individuals with either incident dementia or mild cog-
nitive impairment by 2015. For this model we only examined in-
dividuals who had not developed dementia or mild cognitive impair-
ment by the end of WHISCA in 2010. All LCS models were conducted
using the SEM program MPLUS version 8 (Muthén and Muthén,
1998–2018) which was run via the MPLUS Automation package
(Hallquist and Wiley, 2018) in R (Team, 2018).

3. Results

On average, participants completed near six
(mean ± S.D. = 5.68 ± 2.02) assessments of episodic memory and
depressive symptoms. Descriptive statistics for CVLT measures, GDS-15,
and PM2.5 exposure are presented in supplemental Tables S1 and S5.
Bivariate correlations between respective CVLT measure, GDS-15, and
PM2.5 exposure are presented in supplemental Figs. S3–S5. Table 1
compares the distribution of the 3-year average PM2.5 exposure prior to
the WHISCA assessment by population characteristics. Participants with
higher levels of PM2.5 exposure estimates averaged over follow-up were
more likely to be racial/ethnic minorities (African-American or His-
panic White), residing in the Midwest, a non-drinker or past-drinker,
participating in some physical activity or 2–4 episodes/week, and re-
porting higher household incomes (≥$75,000).

All univariate LCS models fit data acceptably, with Root Mean
Square Residual Approximations (RMSEA) meeting suggested cutoffs
(Byrne, 2005) for a very close model fit (RMSEA’s ranged from 0.048 to
0.055). See supplemental Table S6 for all model fit indices and sup-
plemental Table S7 for growth parameter estimates from the univariate
models. Supplemental Fig. S6 presents the estimated mean score on
each outcome with 20 randomly selected individual trajectories to de-
monstrate variability around the average trajectory. 3-year average
PM2.5 exposure was negatively associated with change in all three CVLT
measures, indicating the episodic memory declines were accelerated by
increased exposures before each assessment (see Table 2 for parameter
estimates). Although PM2.5 exposure was associated with increasing
depressive symptoms, this association was not statistically significant.

Fig. 3 depicts estimated trajectories of episodic memory or depres-
sive symptoms associated with either relatively low (25th percentile),
average (median), or relatively high (75th percentile) ambient PM2.5

exposure for each WHISCA assessment, among women with the average
levels of episodic memory performance or depressive symptoms at
WHISCA baseline.

The results of bivariate LCS models examining the indirect effect of
PM2.5 on changes in depressive symptoms are presented in Table 3. All
models exhibited good model fit (RMSEA < 0.05). Consistent with
univariate models, increased PM2.5 was associated with greater declines
across all three CVLT measures. Women with worse performance on all
three CVLT measures tended to have increasing depressive symptoms
over the subsequent year. Significant indirect effects of PM2.5 on in-
creasing depressive symptoms were present across all three CVLT
measures. These indirect effects suggest that PM2.5 exposure was as-
sociated with greater declines in episodic memory which were then
associated with increasing depressive symptoms over time. The direct

Table 2
Univariate structural equation models examining the associations between 3-
year average PM2.5 exposure and change in verbal episodic memory and de-
pressive symptoms (N = 2,202).

Univariate Model 1
Estimatesa of PM2.5 effect on change

Outcome γPM2.5 on Δem

or
γPM2.5 on Δdep

95% confidence interval

CVLT measures
Trials 1–3 −1.48 (−2.10, −0.85)
Short-delay free recall −1.43 (−2.12, −0.73)
Long-delay free recall −1.11 (−1.79, −0.42)
Depressive symptoms
GDS-15 0.12 (−0.51, 0.74)

Abbreviations: CVLT = California Verbal Learning Test; GDS-15 = 15 item
Geriatric Depression Scale.
Estimates bolded if statistically significant at p < 0.05.

a All estimates derived from the latent change score structural equation
model (SEM) as depicted in Fig. 1b, with PM2.5 scaled by interquartile range
(4.04 μg/m3). In all models, the effect of time-varying PM2.5 exposure on initial
CVLT performance, and on initial GDS-15 were adjusted for age at WHISCA
baseline, race/ethnicity, geographic region of residence, education, household
income, lifestyle factors (smoking, alcohol use, physical activities) and clinical
characteristics (use of hormone treatment; hypercholesterolemia, hypertension,
diabetes, and history of cardiovascular disease).
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effect of PM2.5 exposure on changes in depressive symptoms was not
significant.

Results of bivariate LCS models examining the indirect effect of
PM2.5 exposure on changes in episodic memory are presented in
Table 4. All models exhibited acceptable model fit (RMSEA < 0.05).
There were statistically significant direct effects of PM2.5 exposure on
declines in episodic memory, but no evidence supporting indirect ef-
fects of PM2.5 exposure. PM2.5 exposure was not directly associated with
change in depressive symptoms, and depressive symptoms were not
associated with subsequent changes in episodic memory.

Results from additional analyses excluding women with incident
dementia by 2015 are similar (Supplemental Materials, Tables S8–S10).
Although removing the incident dementia cases attenuated the para-
meter estimates of the PM2.5 effects on changes in depressive symp-
toms, both the estimates of total effect (Table S8) and direct effect
(Table S9) remained statistically non-significant. Additional analyses
restricted to women without mild cognitive impairment or dementia by
2015 also revealed very similar results as the sensitivity analyses ex-
cluding women with incident dementia by 2015 (Supplemental
Materials, Tables S11–S13).

Fig. 3. Graphs of the estimated performance on the California Verbal Learning Test measures and depressive symptoms by low (25th percentile), median, and high
(75th percentile) average daily PM2.5 exposure.
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4. Discussion

This is the first study to examine whether exposure to ambient air
pollutants in late life affects the temporal dynamics and bidirectional
relation of changes in depressive symptoms and episodic memory. In a
geographically-diverse cohort of older women, long-term exposure to
ambient PM2.5 estimated at the residential locations was associated
with accelerated declines in episodic memory over the 8-year study
period. We did not find any significant direct association between PM2.5

exposure and annual change in depressive symptoms. However, in bi-
variate models, we observed a significant indirect effect of PM2.5 ex-
posure on increasing depressive symptoms via declines in episodic
memory. Our data did not support depressive symptoms as a neu-
ropsychological mediator of brain aging associated with PM2.5 ex-
posure. These same associations were observed in older women who
remained cognitively-intact during the follow-up, suggesting that neu-
rocognitive disorders including dementia and its underlying

neuropathological processes could not fully explain our findings. Taken
together these results suggest that PM2.5 exposure may exert a neuro-
toxic effect on brain areas implicated in episodic memory followed by a
neuropsychological manifestation of depressive symptoms.

Our study demonstrates supporting evidence for accelerated decline
in episodic memory associated with long-term PM2.5 exposure. In uni-
variate SEMs, higher PM2.5 exposure was associated with greater an-
nual declines in verbal learning as well as in short- and long-delay free
recalls. This observation expanded the earlier report of PM2.5-asso-
ciated memory decline in a 5-year follow-up study which included only
two repeated measures of verbal learning without assessing long-delay
recall (Tonne et al., 2014). In our study, the putative adverse PM2.5

effect sustained in the bivariate SEMs (Table 3), and the observed de-
clines in episodic memory were further associated with subsequent
increases in depressive symptoms, resulting in statistically significant
indirect effects of PM2.5 on increasing depressive symptoms (Table 3). It
is noteworthy that the observed indirect association between PM2.5

Table 3
Bivariate latent change score structural equation models examining the direct effect of PM2.5 exposure on changes in depressive symptoms and the
indirect effects mediated by episodic memory declines (N = 2,202).

CVLT measures

Trials 1–3 Short delay
Free recall

Long delay
Free recall

β (95% CI) β (95% CI) β (95% CI)

Estimatesa of direct effect
Effect of PM2.5 on annual change in depressive

(γPM2.5 on Δdep)
0.07
(−0.53, 0.67)

0.07
(−0.53, 0.67)

0.01
(−0.58, 0.61)

Estimatesa of indirect effect
Effects of PM2.5 on annual changes in CVLT variable

(γPM2.5 on Δem)
−1.44
(−2.08, −0.81)

−1.42
(−2.11, −0.72)

−0.99
(−1.68, −0.29)

Effects of CVLT performance on annual change in
depressive symptoms (γLem on Δdep)

−0.05
(−0.10, −0.01)

−0.07
(−0.11, −0.02)

−0.08
(−0.13, −0.03)

Indirect effect of PM2.5 on annual change in
depressive symptoms

0.08
(0.00, 0.19)

0.10
(0.03, 0.17)

0.08
(0.01, 0.15)

Abbreviations: CVLT = California Verbal Learning Test.
Estimates bolded if statistically significant at p < 0.05.

a All estimates derived from the bivariate structural equation models (SEM) as depicted in Fig. 2 panel B, with PM2.5 scaled by baseline interquartile
range (4.04 μg/m3). In all models, the initial level of PM2.5, CVLT performance, and GDS-15 were adjusted for initial age, race/ethnicity, geographic
region of residence, education, household income, lifestyle factors (smoking, alcohol use, physical activities), clinical characteristics (use of hormone
treatment; hypercholesterolemia, hypertension, diabetes, and history of cardiovascular disease).

Table 4
Bivariate latent change score structural equation models examining the direct effect of PM2.5 exposure on changes in episodic memory and the indirect
effect mediated by depressive symptoms (N = 2,202).

CVLT Measures

Trials 1–3 Short delay
Free recall

Long delay
Free recall

β (95% CI) β (95% CI) β (95% CI)

Estimatesa of direct effect
Effect of PM2.5 on annual change in episodic memory

(γPM2.5 on Δem)
−1.26
(−1.90, −0.63)

−1.45
(−2.45, −0.75)

−1.00
(−1.70, −0.31)

Estimatesa of indirect effect
Effects of PM2.5 on annual changes in GDS-15

(γPM2.5 on Δdep)
0.13
(−0.48, 0.64)

0.09
(−0.52, 0.70)

0.11
(−0.51, 0.72)

Effects of GDS-15 performance on annual change in
episodic memory (γLdep on Δem)

−0.01
(−0.07, 0.05)

0.04
(−0.01, 0.08)

0.02
(−0.02, 0.06)

Indirect effect of PM2.5 on annual change in CVLT − < 0.01
(−0.01, 0.01)

< 0.01
(−0.02, 0.03)

< 0.01
(−0.01, 0.02)

Abbreviations: CVLT = California Verbal Learning Test.
Estimates bolded if statistically significant at p < 0.05.

a All estimates derived from the bivariate structural equation models (SEM) as depicted in Fig. 2 panel B, with PM2.5 scaled by baseline interquartile
range (4.04 μg/m3). In all models, the effect of time-varying PM2.5 exposure on initial CVLT performance, and on initial GDS-15 were adjusted for
initial age, race/ethnicity, geographic region of residence, education, household income, lifestyle factors (smoking, alcohol use, physical activities),
clinical characteristics (use of hormone treatment; hypercholesterolemia, hypertension, diabetes, and history of cardiovascular disease).
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exposure and change in depressive symptoms was only modestly di-
minished after excluding incident cases of dementia or mild cognitive
impairment. These findings lead to two possible interpretations. First,
long-term air pollution exposure may accelerate declines in episodic
memory, while increased depressive symptoms may be indicative of
emotional reaction to self-awareness of cognitive declines (Ganguli,
2009) in the affected individuals or the psychological consequence,
such as social and behavioral changes (e.g., changes in friendships and
family relationships, ability to cope with stress, or engagement in po-
sitively reinforcing activities) associated with cognitive deficits.
Second, the observed indirect effect on depressive symptoms suggests
that PM2.5 neurotoxicity may perpetuate some underlying brain aging
processes, causing damage to brain regions and neural networks es-
sential to maintain episodic memory and emotional health in late life.

Based on the bivariate LCS models, we found no statistically sig-
nificant indirect effect of PM2.5 on episodic memory decline mediated
by changes in depressive symptoms (Table 4), while the direct asso-
ciation between exposure and episodic memory declines remained.
These findings did not support the hypothesis that late-life depressive
symptoms act as a neuropsychological mediator linking PM2.5 exposure
with accelerated cognitive decline. To the best of our knowledge, only
one study (Tallon et al., 2017) attempted to test this hypothesis and
suggested the possible mediation role of depressive symptoms. How-
ever, limited by only two repeated measures, Tallon et al., were unable
to examine the change in either the hypothesized mediator or the
cognitive outcome, and the direct exposure effect defined in their SEM
was cross-sectional in nature. In the present study, we found no sta-
tistically significant evidence that the annual change in GDS-15 in older
women was directly affected by PM2.5 exposure, as shown in both
univariate (Table 2) and bivariate SEMs (Table 4) adjusting for multiple
potential confounders. Two previous studies, one conducted on com-
munity dwelling populations residing in Boston (aged ≥ 65 years)
(Wang et al., 2014) and the other across the U.S. (aged 57–85 years)
(Pun et al., 2017), reported null associations between long-term PM2.5

exposure and change in depressive symptoms across two assessments.
Collectively, these epidemiological data suggest that the neurotoxic
effects of late-life PM2.5 exposure on brain aging may not be primarily
operated by aggravating the longitudinal change in depressive symp-
toms.

Our study results, as well as the growing literature on air pollution
neurotoxicology, point to several important directions for future re-
search in environmental neurosciences of brain aging associated with
exposure to ambient air particles. Early decline of episodic memory is
detectable in preclinical Alzheimer’s disease. Episodic memory also
declines with normal aging, related to volumetric reductions of the
hippocampus and other medial temporal lobe structures (Dickerson and
Eichenbaum, 2010). The indirect effects on increased depressive
symptoms imply that part of the observed PM2.5 neurotoxicity on epi-
sodic memory decline may also confer neural dysfunction in the fronto-
striatal and limbic systems that is well-documented in late-life depres-
sion (Alexopoulos, 2002). Although animal studies (Fonken et al., 2011;
Liu et al., 2018) suggested PM2.5 exposure may alter brain structures
including hippocampal subfields, extant cross-sectional data with re-
gional brain MRI measures (Chen et al., 2015; Power et al., 2018;
Wilker et al., 2015) did not show associations between PM2.5 and
hippocampal volumes. Longitudinal brain MRI studies are needed to
examine whether air pollution neurotoxicity contributes to brain
atrophy in hippocampus and other medial temporal lobe structures. In a
whole-brain MRI analysis of using voxel-based morphometry of a subset
of WHIMS participants, higher PM2.5 exposure was associated with
smaller volumes of prefrontal cortex, but not with hippocampal vo-
lumes (Casanova et al., 2016). Interestingly, we also found older
women with elevated depressive symptoms had smaller gray matter
volumes in frontal lobe subregions, but not in hippocampus or other
medial temporal lobe structures (Goveas et al., 2011). These observa-
tions indicate the need to further examine the role of prefrontal cortex

and related networks in mediating the episodic memory decline asso-
ciated with PM2.5 exposure. Also, an increasing number of studies
suggest that white matter architecture may represent a novel target of
airborne particle-induced neurotoxicity in laboratory animals (Allen
et al., 2014; Woodward et al., 2017) and humans (Chenet al., 2015;
Peterson et al., 2015). White matter abnormalities play an important
role in late-life depression even in the absence of changes in gray matter
(Sexton et al., 2012). In the above-mentioned whole-brain MRI analysis
(Casanova et al., 2016), increased PM2.5 exposure was also associated
with smaller volumes of subcortical white matter including areas in-
volved in salience network, and aberrant processing of this network has
been linked to cortical dysfunction and apathy commonly seen in late-
life depression (Uddin, 2015). Future research with diffusion tensor
imaging can help elucidate whether PM2.5 exposures disrupt white
matter tracts in the fronto-striatal-limbic circuitry. Future studies also
need to examine whether neurotoxic effects of ambient air particles
compromise the functional connectivity, including the possible changes
in resting-state (Fjell et al., 2015; Fjell et al., 2016), in the neural net-
works that modulate positive emotions and reward responses in late
life. The inter-relation between memory decline and depressive symp-
toms has been overlooked in air pollution neurotoxicology. Carefully-
designed experiments with late-life inhalation exposure and repeated
multimodal behavioral assessments are much needed to clarify the
temporal dynamics as well as the inter-relation of memory loss and
depressive-like behaviors. Such animal models can also shed important
lights on underlying mechanisms, no matter through common pathways
or sequential neuropathological events that are driving these different
phenotypes of brain aging in response to air pollution.

We recognize several limitations of our study. First, although the
PM2.5 spatiotemporal model was statistically cross-validated (average
Pearson’s R2 = 0.70), (Cacciottolo et al., 2017; Reyes et al., 2017) the
resulting exposure estimates were still subject to measurement errors.
However, such estimation errors are likely non-differential and tend to
attenuate the observed associations. Second, the present study focused
on regional PM2.5 only, so we did not investigate its chemical con-
stituencies (e.g., black carbon; inorganic secondary aerosols), other
exposure sources (e.g., from near-roadways), or possible interactions
with other pollutant mixtures. Third, we examined only the inter-re-
lation of neuropsychological processes related to emotion health and
brain aging. Although our data did not support the hypothesis that
depressive symptoms are a neuropsychological mediator of brain aging
associated with PM2.5 exposure, we could not rule out the possibility
that increased PM2.5 exposure may interfere with the regulation of
emotions (e.g., emotional arousal) (Dolcos et al., 2014) and decline in
other cognitive domains (e.g., working memory) in vulnerable popu-
lations. Fourth, although our analyses showed that the PM2.5-associated
episodic memory primarily resulted from the direct exposure effects
(Tables 3 and 4), data on late-life depression were only collected on
symptoms in this community-based sample. Therefore, we could not
rule out the possibility that late-onset major depression, if affected by
air pollution exposure and sustained over time, may still contribute to
the progression of brain aging or ADRD with accelerated decline in
episodic memory. Fifth, our modeling approach was based on the as-
sumption that each neuropsychological process is homogeneous, which
disregards the potential heterogeneities present in the longitudinal
trajectories of brain aging phenotypes. Sixth, the bivariate SEM for LCS
is not equipped to examine the possible exposure effects on concurrent
neuropsychological processes of brain aging, including episodic
memory decline and depressive symptoms that correlated with each
other. However, the observed lack of direct exposure effect on change
in depressive symptoms does not provide a strong support for this al-
ternative hypothesis. Lastly, our findings may not be generalizable to
men or younger women.

Our study has several strengths. First, women were prospectively
followed over a long period of time (8 years), with annual assessments
of both their EM and depressive symptoms, allowing us to closely
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examine the temporal dynamics. Second, the use of sophisticated SEMs
for latent change scores allowed us to examine the complex associations
between PM2.5 exposure and temporal changes in the two inter-related
neuropsychological processes of EM and depressive symptoms. Third,
the comprehensive data in the WHIMS cohort allowed us to account for
a number of important covariates and reduce potential sources of
biases.

5. Conclusions

Our study substantiates the epidemiologic evidence that long-term
PM2.5 exposure in late life may accelerate declines in episodic memory.
Exposure was indirectly associated with increases in depressive symp-
toms through declines in episodic memory. Our data did not support
depressive symptoms as the neuropsychological mediator of accelerated
brain aging associated with PM2.5 exposure, but suggested changes in
depressive symptoms may result indirectly from episodic memory de-
cline associated with exposure. These findings suggest that PM2.5 neu-
rotoxicity may damage brain areas implicated in episodic memory,
possibly involving networks critical to emotion regulation in late life.
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