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The APOE gene alleles modify human aging and the response to the diet at many
levels with diverse pleotropic effects from gut to brain. To understand the interactions
of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects
energy metabolism, the immune system, and reproduction. The age-accelerating APOE4
allele alters the endosomal trafficking of cell surface receptors that mediate lipid and
glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3
and then APOE2 in the human species. Under conditions of high infection, uncertain
food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As
humans transitioned into modern less-infectious environments and longer life spans,
APOE4 increased risks of aging-related diseases, particularly impacting arteries and
brain. The association of APOE4 with glucose dysregulation and body weight promotes
many aging-associated diseases. Additionally, the APOE gene locus interacts with
adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration
and metabolism, for which we anticipate complex gene-environment interactions. We
summarize how diet and Alzheimer’s disease (AD) risk are altered by APOE genotype
in both animal and human studies and identify gaps. Much remains obscure in
how APOE alleles modify nutritional factors in human aging. Identifying risk variant
haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to
environmental conditions.

Keywords: APOE, Alzhcimer’s disease, diet, aging, genetics

INTRODUCTION

Circulating lipoproteins have three major roles in lipid binding and transport, that are arguably
interdependent and to a large extent based on the capacity to exchange lipids among cells and
within different cellular compartments. First, lipoproteins provide lipids as a source of cellular
energy. Second, lipoproteins supply adrenals and gonads with cholesterol for steroid synthesis
pre-and postnatally. Third, lipoproteins modulate the innate immune system and susceptibility
and response to infecting organisms, whether pathogenic or not. These interdependent
roles maintain sufficient energy substrates for reproductive and immune function and to
tolerate short bouts of fasting. Lipoproteins provide efficient packaging of lipid-derived energy
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precursors of cell components. Fatty acids derived from plasma
triglycerides are used for energy production by muscle, and
if in excess, lipids are directed into adipocytes for storage.
Blood lipid transport is regulated by specific apolipoproteins
(apo), lipoprotein receptors, lipolytic enzymes, and transfer
proteins, which act in concert to maintain the balance of
cholesterol and triglyceride homeostasis in tissues and plasma.
Among apolipoproteins, apoE exists in three allelic variants that
have multiple influences on human aging. There are emerging
subcellular roles of apoE, for its binding to β-amyloid peptides; in
mitochondrial metabolism; and as a potential transcription factor
in the cell nucleus.

The APOE gene allelic variants, ε2 (APOE2), ε3 (APOE3),
and ε4 (APOE4) differ at two amino acid residues (Table 1).
The prevalence of the major allele APOE3 ranges from
48% to 94%, while the minor APOE4 allele has a wider
range of 3–41% globally (Table 1, Singh et al., 2006;
Abondio et al., 2019). APOE alleles have a major impact on
aging-associated diseases, particularly cardiovascular disease,
stroke, Parkinson’s, lew body dementia, multiple sclerosis, and
late-onset Alzheimer’s disease (AD). The underlying pathologic
role of APOE alleles may be understood in terms of its
metabolic impact during aging, which has implications for
optimizing our diet. These questions are approached by
examining basic mechanisms of apoE cell biology relevant to
energy metabolism with insights into how adaptive responses
to infections could facilitate reproduction but increase the
risk of aging-associated diseases. We also discuss the APOE
gene cluster and disease risk in different ethnic groups.
Lastly, we consider how the effect of apoE on cellular
energy preferences can give insights on the failed past clinical
trials, and how a more inclusive understanding of apoE

could enable the development of novel study designs and
drug targets.

ApoE Structure and Function
ApoE lipoproteins have crucial roles in cholesterol and lipid
flux between tissues during fasting and postprandially. As
an exchangeable apolipoprotein, apoE shuttles between larger
lipid-containing VLDL particles and the smaller protein-
containing HDL particles (Blum, 1982). On VLDL, apoE
promotes VLDL clearance and lipid loading into cells via
apoE receptors such as the LDL receptor (LDLr) family.
Following lipolysis, apoE is exchanged to HDL particles, which
have a longer half-life and more complex functions. VLDL
is catabolized faster than HDL and has a higher affinity to
surface apoE receptors. These biochemical properties have a
major impact on VLDL and HDL metabolism and affect the
distribution of lipids carried by these particles in different tissues,
discussed below.

The differing presence of cysteine vs. arginine at sites 112 and
158 of apoE affects its binding of lipids and receptors. ApoE3,
the most common isoform, contains cysteine and arginine at
positions 112 and 158, respectively (Table 1). ApoE2 has two
cysteines and apoE4 two arginines at these positions. For the
high-affinity binding, apoE must be bound to phospholipids
or lipoproteins. ApoE4 has greater lipid binding affinity than
apoE3 and apoE2, which has a major effect on apoE functions.
Lipid-free apoE does not bind with a high affinity to LDLrs.
Glycosylation and sialylation of apoE affect the binding of apoE
to HDL (Marmillot et al., 1999). In cerebrospinal fluid, apoE
is heavily sialylated compared to plasma (Hu et al., 2020). The
sialylation is at the C terminus and appears to differ by isoform
(Flowers et al., 2020) although much more work is needed to

TABLE 1 | Human APOE polymorphisms and differences by species.

Table 1A: Human APOE Polymorphisms and Differences by Species
ApoE Residue (mature peptide) 61 112 158
ApoE2 Arginine (R) Cysteine (C) C
ApoE3 R C R
ApoE4 R R R
Chimpanzee Threonine (T) R R
Mouse T R R

Table 1B: APOE 2 and 4 alleles: prevalence and major characteristics
APOE 4 APOE 2

Population Frequency* 3-41% 1-38%
R61—Glu255 domain interactions Present Absent
Protein aggregation Increased Lower
Biochemical Properties Enhanced binding to lipids Reduced binding to the LDL-receptor

compared with E3 and E4
Lipid Metabolism Hypercholesterolemia Hypertriglyceridemia A small percentage have

hypertriglyceridemia
BMI and disease association Lower BMI, particularly with aging Greater BMI with homozygotes
Insulin resistance Increased Lower
Chronic Inflammation Enhanced response to inflammation Lower response to inflammation
Brain amyloid plaque accumulation Increased Lower
Alzheimer’s disease risk Increased Protective
Blood-brain barrier integrity Compromised Not studied
Vascular system Increased atherosclerosis Mixed. Protects against heart disease, but

increases risk of intracranial hemorrhages

*Abondio et al. (2019): data of 1000 Genome Project integrated with Singh et al. (2006).
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address the isoform-specific effects of sialylation on apoE lipid
binding and function in the brain.

Two key properties of apoE4 that explain its greater lipid-
binding properties are a domain interaction and reduced stability
relative to apoE2 and apoE3 (Dong and Weisgraber, 1996;
Morrow et al., 2000). The term ‘domain interaction’ refers to
an interaction between R61 in apoE4 with the acidic Glu255,
which is mediated by the positively charged arginine at position
112. This in part explains the preferential binding of apoE4 to
large VLDLs, whereas apoE3 and apoE2 prefer smaller HDLs
(Weisgraber, 1990). This binding property results in more apoE
molecules per lipid particle than apoE3 and apoE2 (Gong
et al., 2002). The higher density of apoE molecules per lipid
particle enhances apoE4’s affinity to LDLrs. Per apoE molecule,
apoE3 and apoE4 bind to LDLrs with similarly high affinity, while
the binding of apoE2 is 100-fold lower (Weisgraber et al., 1982).
Mouse apoE, like apoE4, contains the equivalent of R112 and
Glu255 but lacks the critical R61 equivalent (it contains T61).
The importance of T61 to domain interactions was shown in
mice by targeted mutagenesis and replacement of T61 with
R61 (Dong and Weisgraber, 1996; Raffai et al., 2001). The
engineered T61 to R61 apoE lost the wildtype binding preference
for HDL and enhanced its affinity to VLDL (Raffai et al., 2001).
Moreover, the R61 mouse had a 40% higher level of brain
amyloid peptides than C57BL/6, together with spatial memory
deficits (Adeosun et al., 2019). The chimpanzee apoE resembles
mouse apoE at T61, which predicts apoE3-like lipid binding,
despite its apoE4-like R112 and R158 (Finch, 2010). However,
chimpanzee apoE differs from humans in other amino acids, e.g.,
four of the eight residues that showed positive selection in the
human lineage are within the lipid-binding C-terminal region
(Vamathevan et al., 2008).

ApoE isoforms also differ considerably in the conformational
stability of their N-terminal domains: apoE4 is the least
resistant to thermal and chemical denaturation, apoE2 is the
most, and apoE3 with intermediate resistance. The folding
intermediates of apoE4 present a core alpha-helical structure
with increased beta-structure and an increased hydrodynamic
radius, promoting the ‘‘molten globule’’ state. This semi-folded
structural state enhances the binding of apoE4 to larger lipid-
containing particles in plasma and amyloid-β deposits in the
brain (Chetty et al., 2017). Importantly, the molten globule
state favors the aggregation of monomeric and poorly lipidated
apoE. At the low pH of endosomes, apoE4 is more favored than
apoE3 to form amolten globule with its increased binding affinity
to lipids (Morrow et al., 2002). ApoE aggregation has a role
in neurodegenerative diseases such as AD (Rawat et al., 2019),
predisposing the aggregation of interacting proteins, e.g., seeding
of amyloid-β fibrils.

The Importance of apoE Recycling to
Cellular Bioenergetics
ApoE is unique among the apolipoproteins in its ability to
recycle in and out of cells, with minimal intracellular degradation
(Farkas et al., 2003). After intracellular uptake of apoE containing
lipoprotein particles, e.g., in liver cells, the internalized lipids
are dissociated from apoE into late endosomal compartments,

followed by recycling of apoE through early endosomes and
its re-secretion within or into HDL particles. In liver cells, the
recycling of apoE is stimulated by smaller HDL particles and is
associated with cholesterol efflux to HDL (Heeren et al., 2003).

One of the characteristics of apoE4 is its lower recycling
capacity, which likely results from its greater affinity for lipid
binding. Indeed, HDL induced cellular recycling of apoE4 is
much weaker than other apoE isoforms. This property decreases
cholesterol efflux (Heeren et al., 2004) and enriches the cell
membrane with cholesterol. The lower pH in early endosomes
promotes apoE aggregation and contributes to its reduced
secretion from cells. ApoE forms complexes with several
surface proteins (the apoE interactome) such as LRP1, ABCA1,
ApoER2, and the insulin receptor (IR). ApoE’s propensity
to co-aggregate with these proteins in endosomes reduces
the plasma membrane levels of these cell surface proteins
(Figure 1).

Recycling of apoE appears to depend on the expression of
the LDLr (Fan et al., 2011) and the activity of ATP binding
cassette 1 (ABCA1; Rawat et al., 2019). ABCA1 functions
to lipidate apoA-1 and apoE, forming small nascent HDL
particles. While ABCA1 activity is not required for apoE
recycling (Braun et al., 2006), it can indirectly enhance
apoE recycling through mediating the formation of smaller
HDL particles (HDL3) which directly stimulate apoE secretion
and recycling.

Reduced recycling of apoE4 affects its cellular energy
source preferences. ApoE complexes with the IR and reduced
apoE recycling trap the IR in the endosomes away from the
cell surface (Zhao et al., 2017). This reduction in IR surface
expression causes reduced utilization of glucose to generate
ATP and promotes fatty acid oxidation. Neuronal cell lines
expressing APOE2 have more hexokinase, a critical enzyme
of glycolysis, which yields a more efficient production of
energy from glucose. Neuronal cell lines expressing APOE4,
on the other hand, have lower hexokinase activity (Wu
et al., 2018). Also, human APOE2 expressing immortalized
astrocytes have a 2.5-fold greater glucose uptake while
APOE4 astrocytes have half the glucose uptake capacity
of APOE3 (Williams et al., 2020). The effect of genotype
on APOE-TR mice models is complex and dependent on
the dietary background. Under a chow diet (5% fat), the
brains of 15-months old APOE4 targeted replacement (TR)
mice show an increase in 18-FDG glucose brain uptake
by PET (Venzi et al., 2017). By fMRI, older APOE4-TR
mice on a chow diet show increased hyperexcitability at
the entorhinal cortex, together with changes in metabolism
suggestive of enhanced mitochondrial oxidation activity
(Nuriel et al., 2017a). In contrast, APOE4-TR mice on a
high-fat diet (60% fat) demonstrate a different phenotype:
lower glucose uptake in the frontal lobe, and hippocampal
tissue insulin resistance (Zhao et al., 2017; Johnson et al.,
2019). Following a high fat but low omega-3 diet, APOE4-TR
mice demonstrate lower plasma and adipose tissue omega-3
levels with greater expression of fatty acid-binding proteins
(FABPs) and liver carnitine palmitoyl transferase1 (CPT1)
than APOE2-TR mice in both liver and adipose tissues. These
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FIGURE 1 | Effect of apoE recycling and aggregation on glucose and lipid metabolism. ApoE recycling controls the expression of several cell surface proteins, such
as the insulin receptor (IR), ATP binding cassette 1 (ABCA1), or lipoprotein receptor-related protein 1 (LRP-1). The formation of smaller HDL3 by ABCA1 stimulates
apoE recycling. In the circulation, apoE exchanges between HDL and VLDL. Upon lipid loading, the expression of apoE, ABCA1, and ABCG1 is induced via the
PPAR/LXR/RXR system to facilitate lipid storage or oxidation and formation of HDL. ApoE4 is prone to aggregate in endosomes trapping interacting proteins such as
IR and ABCA1. ApoE4’s switches the cellular energy preference from glucose to polyunsaturated fatty acids, and associates with lower ABCA1 activity and greater
cell membrane cholesterol. Greater cell membrane cholesterol enhances TLR4 signaling and activates the inflammasome. ApoE4 also decreases the activation of
PPARγ contributing to lower insulin sensitivity and utilization of glucose as a source of ATP.

changes promote greater oxidation of polyunsaturated fatty
acids (PUFAs; Conway et al., 2014). Additional features of
APOE4 include changes in lipid droplets. Lipid droplets are
dynamic organelles that play a role in various metabolic diseases
and appear in many cell types including brain cells. Lipid
droplets are increased in neurodegenerative diseases such
as AD (Hamilton et al., 2015). APOE4 astrocytes display an
increase in the number of smaller lipid droplets compared to
E3 astrocytes, with a preference for greater endogenous fatty acid
oxidation and have a greater susceptibility to CPT1 inhibition
(Farmer et al., 2019).

Reduced recycling of apoE4 also affects cellular cholesterol
metabolism. ApoE4 traps ABCA1 in endosomes away from the
cell surface (Rawat et al., 2019). Reduced ABCA1 activity results
in lower cholesterol efflux to HDL, redistributes cholesterol to
cell membranes. In macrophages, greater membrane cholesterol
is associated with activated TLR4 signaling, which, in turn,
induces NFkB and inflammatory gene responses (Westerterp

et al., 2013). A greater distribution of cholesterol to the
neuronal plasma membrane promotes BACE1 expression and
APP processing to produce more β-amyloid peptide (Cui
et al., 2011). In microglia and astrocytes, less cholesterol efflux
reduces Abeta degradation (Lee et al., 2012; Rawat et al., 2019).
Another effect of reduced ABCA1 activity is to lower apoE
lipidation. Since poorly lipidated apoE4 is more aggregation-
prone than lipidated apoE4 (Hubin et al., 2019), lipid-poor
apoE4 traps ABCA1 in endosomes and lowers ABCA1 activity.
This process may be reversed by enhancing ABCA1 activity
from by small HDL to stimulate the recycling of apoE
(Rawat et al., 2019). As noted above, lipidated apoE is less
aggregation-prone. Therefore, enhancing the ABCA1 activity
provides a therapeutic approach to stimulate the recycling
of apoE4 out of endosomes and restore the function of
cell surface expression of membrane proteins that interact
with apoE. This could be a promising therapeutic target to
modulate apoE4’s effects on cellular energy preferences. Figure 2
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FIGURE 2 | This model illustrates how fundamental structural properties of apoE4 (domain-interactions, greater affinity to lipid binding, and self-aggregation) alter
cellular biology promoting endosomal congestion, cell surface aggregation with other proteins, and association with larger lipid-containing particles in the circulation.
These biochemical features associated with changes in cellular energy preferences, cholesterol transport, immune response, and Aβ metabolism. Complex
interaction with aging, sex, diet, physical activity, and genetics predispose APOE4 carriers to aging-associated diseases.

gives a model that integrates the basic biology of apoE with
disease risk.

Genetic Regulation APOE Expression
Through the PPAR-LXR-ApoE System
The genetic control of APOE expression differs by cell type
but is tightly linked to the lipid loading of cells (Laffitte
et al., 2001). ApoE, ABCA1, and ABCG1 proteins are highly
induced in lipid-loaded cells including hepatocytes, adipocytes,
and astrocytes to facilitate lipid exchange and utilization.
The nuclear receptors LXRα and LXRβ mediate the effect
of lipid loading on the expression of apoE, ABCG1, and
ABCA1. The relation of apoE4 expression to PPARγ activity
may underlie the association of APOE gene expression with
inflammatory and cellular energy utilization preferences. As
observed for LXRs, the activation of PPARγ can induce gene
expression for both ABCA1 and APOE (Chawla et al., 2001).
Reciprocally, PPARγ can induce the expression of LXRα,
thereby creating a metabolically linked cycle that increases
apoE expression. Induction of PPARγ activity sensitizes glucose
uptake by insulin, stimulates adipogenesis, and dampens the
inflammatory response (Leonardini et al., 2009). However,
the PPAR-γ signaling pathway may be blunted in APOE4
(Wu et al., 2018) by presently obscure mechanisms. This

complex relationship implies that the interventions that enhance
PPARγ signaling are less effective in APOE4 carriers. This
concept has implications for pharmacological and lifestyle
interventions that work through PPARγ signaling pathways as
discussed below.

Effect of APOE4 on Triglyceride and
Cholesterol Metabolism
APOE4 carriers display both hypertriglyceridemia and
hypercholesterolemia (Dallongeville et al., 1992; Carvalho-
Wells et al., 2012). In contrast, APOE2 carriers have
lower LDL cholesterol (LDL-C) levels, while some
APOE2 carriers have hypertriglyceridemia. Postprandial
lipidemia, for example, is elevated in APOE4 carriers,
Figure 3 (Carvalho-Wells et al., 2012).

The mechanism for hypertriglyceridemia in APOE4 may
involve its stronger binding to VLDLwhich decreases lipoprotein
lipase mediated lipolysis (Li et al., 2013). A major mechanism for
hypercholesterolemia with APOE4 is through the sequestration
of apoE proteins on the hepatic cell surface. The lower LDLR
affinity of apoE2 increases plasma apoE levels (Blanchard
et al., 2018). The elevated plasma apoE2 transfers onto VLDL
which then facilitates LDLR and heparan sulfate proteoglycans
(HSPG) mediated uptake without sequestration of smaller
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FIGURE 3 | APOE alleles and post-prandial plasma triglyceride levels (TG).
Plasma was sampled after two meals in healthy adults, ages 20–70 years.
with BMI 19–32 kg/m2; APOE3 homozygotes, N = 142; APOE3/4
heterozygotes, N = 65. After fasting overnight, subjects received breakfast
(49 g fat, t = 0) and lunch (29 g fat, 330 min), solid arrows. The APOE4
excess of plasma TG did not differ by age. For clarity, the graph omits APOE2
carriers, whose triglycerides was close to APOE4. Redrawn and simplified
from Carvalho-Wells et al. (2012).

LDL particles. In contrast, apoE4 is more confined to the
hepatic cell surface than apoE2 (Altenburg et al., 2008). The
high LDLR affinity of apoE4 on VLDL particles keeps it
bound to the hepatic surface, which explains the increase in
degradation of apoE4 and lower plasma apoE4 levels. The
sequestering of VLDL particles in APOE4 carriers on the
hepatocyte surface exposes them to lipases for subsequent
conversion to remnants and LDL (Altenburg et al., 2008),
providing a mechanism for the greater levels of LDL-C
with APOE4.

APOE4 and Adipocytes
ApoE is highly expressed in adipocytes, where it modulates
adipocyte lipid flux and mediates the effects of PPAR-γ
agonists on lipogenesis (Huang et al., 2006). Endogenous
adipocyte apoE is important for regulating cell size, triglyceride
content, adipose-specific gene expression, and inflammation.
Adipocytes isolated from apoE-knockout (−/−) mice are
smaller, show decreased adipogenic gene expression, and
have lower triglyceride and fatty acid content than wildtype
(Huang et al., 2006). In humans and APOE-TR mice, the
APOE4 allele is associated with lower BMI but greater aspects
of the metabolic syndrome manifested in elevated plasma
glucose and insulin (Fallaize et al., 2017), particularly in
obese APOE4 carriers as discussed below. These changes
may be attributed to the inhibitory effects of APOE4 on
PPAR-γ signaling (Wu et al., 2018). Interactions of diet

FIGURE 4 | BMI (mean ± SE) by APOE isoforms. In the Spanish Aragon
Workers Health Study (n = 4,881) APOE isoforms were associated with body
mass index (BMI) in rank order of APOE4 < APOE3 < APOE2. APOE2/E2
carriers (n = 21) had a greater BMI than the other isoforms. Adapted from
Tejedor et al. (2014).

and APOE alleles were shown for APOE-TR mice (Arbones-
Mainar et al., 2010). After feeding a western-type high-fat diet
for 12 weeks, APOE4-TR mice developed greater impaired
glucose tolerance than APOE3-TR mice. Treatment with the
anti-diabetes drug rosiglitazone (1.5 mg/g body weight) for
an additional 4 weeks improved glucose tolerance only in
APOE3 mice, but improved plasma lipid profiles for both
APOE3 and APOE4-TR mice. Induction of adipogenesis and
lipogenesis was severely blunted in adipose tissues, but not
in the livers, of APOE4-TR mice. Consequently, lipids were
redistributed to the liver, causing marked steatosis in these mice.
Furthermore, APOE alleles show the sex-specific effects of a
high-fat diet on metabolic measures. Male APOE4-TR mice
were more susceptible than male APOE3-TR mice to metabolic
disturbances, including visceral adipose tissue accumulation and
glucose intolerance following 12 weeks of an HFD, while female
APOE3 and APOE4-TR mice had similar metabolic responses
(Jones et al., 2019).

The mechanism for these observations may result from
the failure of thiazolidinediones to stimulate PPARγ activation
and adipocyte differentiation in preadipocytes and embryonic
fibroblasts isolated from APOE4 vs. APOE3-TR mice. Since
adipose tissue expression of apoE is modulated by PPARγ

agonists, the increase in apoE4 gene expression inhibits PPARγ

signaling effects on adipogenesis (Yue et al., 2004). This
coregulation of insulin sensitivity and APOE gene expression
makes APOE4 carriers resistant to mechanisms of enhancing
insulin sensitivity through liver X receptor and PPARγ in
adipocytes (Arbones-Mainar et al., 2010). These findings help
explain why APOE4-TR mice on fatty western-type diets
gain less body weight and adipose tissue than those with
APOE3-TR mice, despite having larger adipocytes (Arbones-
Mainar et al., 2008). The inability to form new adipocytes
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in APOE4 together with a greater predisposition to PUFA
oxidation has implications for the storage and distribution of
lipids. For example, APOE4-TR mice have 40% lower adipocyte
docosahexaenoic acid (DHA) content compared to APOE3-TR
mice on an omega-3 deficient diet (Conway et al., 2014), which
may explain the vulnerability of human APOE4 carriers to an
omega-3 deficient diet.APOE4 associates with reduced adipocyte
insulin signaling manifested by less weight gain and impairment
of glucose tolerance during a western diet (Arbones-Mainar et al.,
2008, 2016). These APOE4 properties have implications toward
dietary recommendations with aging: a shift from a glucose
to fat as a source of brain energy and vulnerability to a low
omega-3 diet.

The lower weight gain and greater insulin resistance with
APOE4 are also reported in some but not all human studies.
For example, in the Atherosclerosis Risk in Communities
study (N = 15,000 individuals; Volcik et al., 2006) and the
Spanish Aragon Workers Health Study (N = 4,881; Tejedor
et al., 2014) APOE isoforms were associated with body mass
index (BMI) in rank order of APOE4 < APOE3 < APOE2.
The later also showed that APOE2/E2 carriers (n = 21) had
a greater BMI than the other isoforms (Figure 4). Obese
APOE4 men had greater measures of IR (Elosua et al., 2003).
These findings were not seen in non-obese APOE4 carriers or
individuals with other APOE genotypes. Besides, they were also
sex-specific: only men showed these APOE allele associations
with obesity. These studies show that APOE2 decreases the
risk of metabolic syndrome but not higher BMI, while APOE4
increases the risk of metabolic syndrome, and that these effects
may be sex-specific.

Cognitive functions are influenced by complex interactions
of APOE genotype with obesity that differ by sex, age, and
co-inherited gene variants (Table 2). Midlife obesity was
associated with an increased risk of late-onset AD in APOE4
carriers (Ghebranious et al., 2011). Also, in a longitudinal cohort
of the Framingham Heart Study, an increase in the waist to hip
ratio from ages 40–79 was associated with impaired executive
function and increased white matter hyperintensities (mean age
61 ± 9 years; Zade et al., 2013). These findings differ later in life.
In a longitudinal population-based sample of 4,055 participants
interviewed at 3-year intervals from 1993 to 2012, obesity in older
APOE4 carriers was associated with slower cognitive decline
(Rajan et al., 2014). The Prospective Population Study ofWomen
(PPSW) in Sweden showed an increased risk of cognitive decline
with later life weight loss. This systematic sample of 1462 women
born between 1908 and 1930 and aged 38–60 years at baseline
examined several decades later for the incidence of dementia
in relation to BMI, and APOE4 allele status. Women carrying
APOE4 who experienced greater weight loss later in life had a
higher risk of dementia (Backman et al., 2015). Taken together,
these findings suggest that obesity may be protective against
cognitive loss in older APOE4 carriers but not during middle
life. We suggest an age-specific complex interaction between
APOE4 and body weight on vascular risk on cognitive outcomes.
Younger obese individuals with APOE4 have an increased risk of
metabolic and vascular disease that negatively affects cognitive
functions later in life. In contrast, obesity in older APOE4

carriers may provide fatty acids as brain energy fuel with an
opposing effect.

APOE Genotype and Sex
Some studies indicate a sex-APOE interaction on the brain.
For example, in AD brains, the APOE4 allele shows male
excess for cerebral microbleeds, a marker of small vessel
disease, which is opposite to the female excess of plaques and
tangles (Finch and Shams, 2016). Sex differences in APOE4-
associated AD risk appear at younger ages. For example, in an
analysis of research studies in the Global Alzheimer’s Association
Interactive Network with data on nearly 58,000 participants, men
and women with the APOE ε3/ε4 genotype had nearly the same
odds of developing AD from age 55 to 85 years. However, for a
subgroup between the age of 65 and 75, the risk of ADwas greater
in women than men (Neu et al., 2017).

APOE Genotype and the Immune System
Macrophage production of apoE regulates its inflammatory
properties (Baitsch et al., 2011). The expression of apoE
converts macrophage phenotype from a pro-inflammatory to
an anti-inflammatory phenotype. Exposure of apoE receptor-
expressing macrophages to apoE led to the expression and/or the
liberation of several markers (i.e., Arg-1, Fizz1/Relm, SOCS3,
IL-1RA). Second, functional characteristics of macrophages
exposed to apoE included reducedmigration and attenuated ROS
generation and cytotoxicity as well as up-regulated phagocytic
activity (Baitsch et al., 2011). In the brain, binding of lipidated
apoE to microglia’s LRP-1 receptor inhibits neuroinflammation
(Brifault et al., 2017). However, there is evidence to
support differences in the inflammatory response based on
APOE genotype.

A unique study compared normal and clinical patients and
TR mice for associations of APOE alleles with inflammatory
responses (Gale et al., 2014). In humans, APOE4 increased
serum interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17, and
tumor necrosis factor-α (TNFα) responses to LPS (endotoxin)
using in vivo and ex vivo assays. APOE4 carriers with
severe sepsis had more thrombocytopenia. Correspondingly,
APOE4-TR mice had greater responses IL-6 and TNFα (the
only cytokines assayed). In a murine monocyte-macrophage
cell line stably transfected to produce equal amounts of
human apoE3 or apoE4, LPS stimulation in apoE4-macrophages
showed higher and lower concentrations of TNF-α (pro-
inflammatory) and IL-10 (anti-inflammatory), for mRNA and
protein levels. Furthermore, apoE4-macrophages had enhanced
the transactivation of the key redox-sensitive transcription factor
NF-κB (Jofre-Monseny et al., 2007). One mechanism for APOE4
associated higher inflammatory responses may relate to the
increase in TLR4 activity by greater cell membrane cholesterol
distribution from lower ABCA1 activity (Westerterp et al., 2013)
as discussed above.

Chronic inflammation increases AD risk with APOE4. Data
from 2,656 members of the Framingham Heart Study offspring
cohort examined longitudinal measures of serum C-reactive
protein (CRP) in relation to the diagnoses of incident dementia
including AD, and brain volume. APOE4 coupled with chronic
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low-grade inflammation, defined as a CRP level of 8 mg/L or
higher, was associated with an increased risk of AD compared
to APOE4 without inflammation and APOE2 and APOE3 with
chronic inflammation (Tao et al., 2018).

As the ancestral human isoform, APOE4 may be beneficial
in infectious environments with high pathogen loads (Trumble
and Finch, 2019). Children carrying APOE4 in Brazilian slums,
are more resistant to diarrhea and have better cognitive
development (Oriá et al., 2010), while adult Tsimane farmer-
foragers in Bolivia with APOE4 have better cognition during
high parasitemia (Trumble et al., 2017). Moreover, in the
highly infectious environment of rural Ghana, APOE4 carriers
showed survival advantage as older adults and children,
suggesting reproductive advantage (van Exel et al., 2017). APOE4
was also protective of HCV infection (Price et al., 2006).
These findings are shown for APOE-TR mice in a model of
infection by Cryptosporidium parvum: the APOE4-TR mice had
faster recovery than E3 for intestinal inflammatory responses
and mucosal damage (Azevedo et al., 2014). The improved
gastrointestinal health with APOE4 relative to APOE2 in mice
and humans may reflect, in part, an increase in the relative
abundance of Lactobacillaceae (Parikh et al., 2020). Lactobacillus
has been associated with improved gut health with regards to
Cryptosporidium or fungal infections and gut health (Di Cerbo
et al., 2016).

APOE Genotype and the Vascular System
APOE4 is associated with greater levels of atherosclerosis,
potentially through increased LDL-C levels from defective VLDL
remnant clearance as described above. Correspondingly, APOE4
carriers have shown a higher incidence of ischemic heart disease
(Xu et al., 2016). The increased use of statins may have attenuated
this adverse impact of APOE4 (Nieminen et al., 2008).

There is evidence supporting BBB breakdown in olderAPOE4
carriers. In APOE-TR models, activation of cyclophilin A
(CypA)–matrix metalloproteinase 9 (MMP-9) pathway leads to
enzymatic degradation of the BBB tight junction and basement
membrane proteins, resulting in BBB breakdown followed
by neuronal uptake of multiple blood-derived neurotoxic
proteins (e.g., thrombin, fibrin), perivascular deposition of
erythrocyte-derived hemosiderin, and microvascular and
cerebral blood flow reductions. The vascular defects in
APOE4-TR mice appear to precede neuronal dysfunction
and may initiate neurodegenerative changes. Also, this
study showed that the astrocyte secreted apoE3 and apoE2,
but not apoE4, suppressed the CypA–MMP-9 pathway in
pericytes via low-density lipoprotein receptor-related protein
1 (LRP1; Bell et al., 2012). In humans, postmortem brain
tissue analysis support BBB breakdown in patients with AD
which is more pronounced in APOE4 carriers compared with
APOE3 or APOE2 (Zipser et al., 2007). The CSF plasma albumin
quotient, a marker of BBB breakdown, is greater in older
(above 65) cognitively normal APOE4 carriers compared to
persons carrying the other genotypes (Halliday et al., 2013).
Ongoing studies are examining whether more subtle vascular
changes at the BBB appear in younger cognitively normal
APOE4 carriers.

APOE Genotype and the Brain
Among its pleiotropic effects on aging, APOE4’s strongest
effects are arguably on the brain. APOE4 is the strongest
genetic risk factor for late-onset AD, with a correspondingly
earlier accumulation of amyloid plaques and neurofibrillary
tangles (Verghese et al., 2013; Jansen et al., 2015). However,
populations differ in APOE4’s risk effect, which is lower
for Latino and African Americans than Caucasians (Farrer
et al., 1997). Population differences in APOE alleles are
discussed below.

Brain development is directly influenced by APOE alleles. In
the Pediatric Imaging Neurocognition and Genetics Study of
1,187 healthy children, APOE4 carriers had thinner temporal
cortex, smaller hippocampus in correlation with weaker
executive functions (Chang et al., 2016). This study confirmed
the early findings of Shaw et al. (2007). Because cortical
thinning is an AD risk factor (Konishi et al., 2018), these
neurodevelopmental effects of APOE4 anticipate the accelerated
trajectory of cognitive aging. At the cell level, dendritic spine
structure also differs: APOE4 carriers had thinner dendritic spin
heads inversely proportionate to the levels of NFT in the frontal
cortex (Braak score; Boros et al., 2019). APOE4-TR mice have
fewer dendritic spines with lower spine volume than the E3 (Ji
et al., 2003; Sun et al., 2017). Correspondingly, the differentiation
of adult neural stem cells (NSC) into hippocampal dentate
granule neurons had less total dendritic length and complexity;
However, NSC proliferation did not differ by APOE allele
(Tensaouti et al., 2018).

APOE4 is associated with glucose hypometabolism in the
brain of older adults (Wolf et al., 2013), and with both markers
of astrocytosis and microgliosis (Fernandez et al., 2019). In
the Mayo Clinic study, older APOE4 carriers demonstrate
greater glucose hypometabolism in AD-affected brain areas
than non-carriers. These changes are not associated with
fibrillary amyloid detected by PET imaging (Knopman
et al., 2014), but smaller aggregates and oligomers may still
be a factor. In the subgroup of participants between the
ages of 30 and 60 years from this study (n = 62), there
were no significant regional differences between APOE4
carriers and noncarriers (Knopman et al., 2014). The effect
of APOE4 on glucose hypometabolism in younger (middle
aged) cognitively normal adults is more evident in APOE4
homozygotes than heterozygotes (Mosconi et al., 2004; Reiman
et al., 2004). Proposed mechanisms include changes in apoE
protein expression levels, qualitative differences in apoE
proteins (for example, aggregated vs. lipidated ApoE), a
direct effect of apoE on nuclear transcription, and complex
interactions with Aβ (Fernandez et al., 2019). Another
mechanism involves apoE’s effect on endosomal trafficking.
Brain endosomes are enlarged decades before the onset
of cognitive decline in APOE4, particularly in pyramidal
neurons in the inferior frontal lobe (Cataldo et al., 2000;
Nixon, 2005). APOE-TR mice corroborate these postmortem
findings, with enlarged endosomes and increased endosomal
trafficking proteins in APOE4 vs. APOE3-TR brains in the
entorhinal cortex area of APOE-TR mice (Nuriel et al., 2017b;
Peng et al., 2019).
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Since apoE interacts with several receptors as it traffics
into the endosomes of neurons and astrocytes, endosomal
trafficking affects several pathways relevant to AD pathogenesis.
For example, apoE forms complexes with the neuronal
IR, shifting it from the plasma membrane to endosomal
compartments contributing to the phenotype of brain IR
(Zhao et al., 2017). ApoE4 complexes with synaptic receptors
reducing neuronal surface expression of ApoER2, as well as
NMDA and AMPA receptors by sequestration in intracellular
compartments, causing reduced enhancement by Reelin of
glutamate synapses (Chen et al., 2010). In astrocytes, apoE
complexes with LRP-1. Reduced recycling of LRP-1 to the
plasma membrane reduces the ability of astrocytes to degrade
Abeta peptides (Prasad and Rao, 2018) and provides one
mechanism for the increased formation of amyloid plaques that
are associated with APOE4. We have shown that APOE4 can
form complexes with ABCA1 in astrocytes, trapping ABCA1 in
late endosomes (Rawat et al., 2019). Lower ABCA1 activity is
associated with lower cholesterol transport and an increase in
intracellular and plasma membrane cholesterol content. An
increase in neuronal membrane cholesterol composition
affects APP processing and increases TLR-4 dependent
inflammasome activation. Increased cellular cholesterol in
microglia limits its ability to degrade Abeta peptides (Lee
et al., 2012). Taken together, reduced recycling of ABCA1,
the IR, LRP-1, ApoER2, synaptic receptors and other proteins
complexed with the apoE4 protein provide one explanation
for the accelerated brain aging phenotype observed in
APOE4 carriers.

APOE GENOTYPE AND THE
CHROMOSOME 19q13 GENE CLUSTER

Other genes linked to APOE on Chromosome 19 must be
considered for the association of APOE4 aging and disease.
The immediate neighbor of ApoE is TOMM40 which encodes
a mitochondrial transport protein. Variants of TOMM40 with
intronic poly-T tracts of varying length (TOMM 523) are
associated with AD (Roses et al., 2010). Genetic variants of the
adjacent TOMM40 and APOE on Ch19q13.3 are independently
and additively associated with dementia risk in Caucasian and
African-American populations (Yu et al., 2017).Moreover, alleles

of APOE and TOMM40modify many aspects of brain aging that
arise before clinical-grade AD, including cognitive processing
and cortical atrophy, loss of myelin, and cerebral microbleeds
(Johnson et al., 2011; Lyall et al., 2014).

The APOE4 rs429358 polymorphism was associated with
higher BMI at later ages more than for younger ages, which
may contribute to late-life specific increased risk of AD by
regulating body fat, as discussed above. This association is
consistent with increased risk of AD with age in the general
population and higher risk or underweight subjects to develop
AD in old age (Joo et al., 2018). There are additive effects of
rs2075650 and rs157580 TOMM40 variants and rs429358 and
rs7412 APOE variants coding the ε2/ε3/ε4 polymorphism
on BMI in age-aggregated and age-stratified cohort-
specific and cohort pooled analysis of 27, 863 Caucasians
aged 20–100 years from seven longitudinal studies
(Kulminski et al., 2019).

Recently, Kulminski et al. (2019, 2020) and Wolters et al.
(2019) documented new AD risk variants in 11 more genes
in 19q13.3 (Table 3) Together with its AD-associated genes,
the 19q13.3 locus includes more than 50 other genes with
diverse functions (Table 3) including lipid metabolism and
transport (ApoC1), inflammatory mediators (NFkB, PVRL2),
reproductive hormones (luteinizing hormone), and transcription
factors (NFkB, zinc finger). While many of these genes do not
have reported AD associations, we include them because of the
possibilities of co-regulation.

Several Ch19q13 genes are co-regulated at a transcriptional
level: ApoE-TOMM40-ApoC1 showed parallel responses
to PPARγ, a ligand-activated transcription factor, and
have promotor DNA binding domains for PPARγ

(Subramanian et al., 2017).
Besides its role as a lipoprotein, there is evidence that the

apoE protein is a direct transcriptional regulator (Theendakara
et al., 2016, 2017, 2018). In their initial study (Theendakara
et al., 2016), chromatin pull-down (ChIP) associated apoE with
about 3,000 genes, and about half of these were restricted
to apoE4, but not ApoE3. Promoters of four genes were
transcriptionally repressed by apoE4: ADNP (Ch20), COMMD6
(Ch13), MADD (Ch11), and SirT1 (Ch10). ApoE was bound
to the SirT1 promoter sequence cagcctccgcccgccacgtgacccgtagtg,
with a Kd of 3 nM.

TABLE 2 | The interaction between aging, obesity, APOE4 with cognitive outcomes.

Author Design Age ApoE4 effect

Ghebranious et al. (2011) Cross-sectional (302 controls, APOE4
18% and 150 AD cases, APOE4 60%)

BMI at age 50. Age of
assessment was 87 in
cases and 78 in controls

Obesity at age 50 was associated with
increased AD risk in APOE4 carriers

Zade et al. (2013) Cross-sectional (general population,
n = 1,969, 21% APOE4 carriers)

40–79, mean age 61 APOE4 with greater waist to hip ratio
was associated lower measures of
executive function and white matter
hyperintensities

Rajan et al. (2014) Longitudinal (n = 4,055), APOE4 34%.
Interviewed at 3-year intervals for
19 years

Age > 65 Obesity and APOE4 showed slower
cognitive decline

Backman et al. (2015) Longitudinal N = 559; trajectories of
BMI for 37 years

Age > 37 APOE4 was associated with a steeper
decline in BMI and greater AD incidence
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TABLE 3 | Chromosome19q13.13.1–13.2.

AD-association

APOE4/q13.31 APOE4 associated more with apoB lipoproteins Roses et al. (2010) and Kulminski et al. (2019)
APOC1/q13.32 Inhibits CETP; all lipoprotein particles VLDL; Kulminski et al. (2019) and Zhou et al. (2019)
APOEC1P/q13.32 Pseudogene Kulminski et al. (2019)
APOC2/q13.32 activates LP lipase for triglyceride hydrolysis Kulminski et al. (2019)
APOC4/q13.32 VLDL Kulminski et al. (2019)
BCAM/q13.32 basal cell adhesion molecule Kulminski et al. (2019)
BCL3/Q13.32 B cell leukemia protein 3, transcription factor Kulminski et al. (2019)
CGB/q13.32 chorionic gonadotrophin
CLPTM1/q13.32 cleft lip and palate transmembrane factor 1 Kulminski et al. (2019)
CYP2A/q13.2 cytochrome P450
C5aR1/q13.3–13.4 complement factor 5a receptor 1
FOXA3/q13.2–13.4 forkhead box transcription factor
IGFL1–4/q13.32 IGF-like family
IRF2BP1/q13.32 Interferon regulatory factor 2-binding protein 1, cotranscription factor
LHB/q13.32 luteinizing hormone beta peptide
NECTIN2/q13.32 herpes receptor (HHV-1); also PVRLl2 Kulminski et al. (2019) and Zhou et al. (2019)
NTF4/q13.3 neurotrophin
OPA3/q13.32 outer mitochondrial membrane
PVRL2/q13.32 poliovirus, receptor-related protein; nectin 2 Kulminski et al. (2019) and Zhou et al. (2019)
RELB/q13.32 NFkB subunit, transcription factor
TOMM40/q13.32 translocase of outer mitochondrial membrane 40 kDa Roses et al. (2010) and Kulminski et al. (2019)
TGFβ1/q13.2 Transforming growth factor β1
ZNF/q13.2 Zinc finger transcription factors, > 20

http://compgen.rutgers.edu/scr19q13.11-19q13.33_kgenes.shtml.

Ethnic Differences in the Associations of
APOE4 With AD Risk
APOE allele frequencies may vary widely within regions,
illustrated by the 3-fold gradient of APOE4 from Nordic to
Mediterranean countries in Europe, e.g., Finland and Sweden
(22%) vs. Italy and Spain (8%; Lucotte et al., 1997; Mastana
et al., 1998). Basques in Spain have even lower APOE4 (6%).
Although APOE4 also increases the risk of AD and CVD in these
populations, there is less correspondence of APOE4 prevalence
with lifespans in these national populations: Finland, 81.4 years;
Sweden 82.7 years vs. Italy 83.7 years and Spain 83.1 years.
Within countries, however, subpopulations differ importantly in
the strength of APOE4 as an AD risk factor.

Ethnicities differ in AD associations with APOE4, which is a
30–50% weaker association for African-Americans and Latinos
than Caucasians (Tang et al., 1996; Farrer et al., 1997; Rajabli
et al., 2018). For Latinos with AD, APOE4 was 30% less frequent
than Caucasians in Texas: 38%, (N = 35) vs. 60% (N = 160;
O’Bryant et al., 2013), consistent with findings from California
(Haan et al., 2003) and Northern Manhatten (Tang et al., 1996).
Myriad environmental and lifestyle factors in the AD exposome
may interact with the APOE alleles (Babulal et al., 2019; Finch
and Kulminski, 2019).

Additionally, neighboring genes to APOE on chromosome
19.3 interact with APOE4. Its nearest neighbor, TOMM40,
has variants of intronic poly-T repeat lengths that differ
by ethnicity as briefly noted above. Several population
studies showed differing AD risk for APOE ε4-TOMM40
’523 haplotypes defined by poly-T length haplotypes: ‘‘short
(’523S, 19 nt)’’ and ‘‘long’’ (‘‘523L’’ > 30 nt). Caucasian
ApoE3/3 carriers with AD are predominantly ‘523L (Roses
et al., 2014; Yu et al., 2017). The older Caucasians and

African Americans differed widely in the frequency of ‘523.
Caucasians (N = 1,848) had almost entirely E4-‘523L (94%),
with <1% ‘523S; contrastingly, African-Americans (N = 540)
had only 48% ‘523S, and 1.1% ’523L. For Caucasians, each
copy of ApoE4 and ‘523L doubled AD risk, with allele dose
effects. For African-Americans, the absence of ‘523L in
APOE4 carriers weakened the impact of APOE4: without
had weaker risk effect the few (1%) with E4-‘523L; E4 plus ‘523L
increased AD risk. Much less is known of other populations.
The Japanese E3-‘523S is less frequent than in Caucasians,
whereas the E4-‘523S is common as for African-Americans
(Nishimura et al., 2017).

The cause of the APOE heterogeneity in the AD risk
effect is obscure. The major possibilities are genetic variation
local to the APOE region that differs among populations. We
must also consider the myriad environmental, lifestyle, and
cultural factors correlated with ancestry. Rajabli et al. (2018)
analyzed APOE genotypes and genome-wide array data in
several African American and Puerto Rican populations: [1,
766 African American and 220 Puerto Rican individuals with
late-onset AD, and 3, 730 African American and 169 Puerto
Rican cognitively healthy individuals (> 65 years)]. The analysis
indicated the importance of ancestry-specific genetic factors near
the APOE locus rather than non-genetic ethnic, cultural, and
environmental factors by the lower risk effect in the APOE4
allele. The linkage disequilibrium (LD) showed that the roles
of the ε4- and ε2- coding SNPs in AD were dependent on
the other SNPs in this locus. Differences between white and
nonwhite populations in LD structure and changes in LD
between the AD-affected and -unaffected subjects may explain
differences in risks of AD for these alleles in these populations
(Kulminski et al., 2020).
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THE RESPONSE OF APOE4 CARRIERS TO
DIETARY AND LIFESTYLE
INTERVENTIONS

We identify important factors that can inform the choice of
future dietary and pharmacological interventions designed to
mitigate the aging effects of APOE4. The first is the co-regulation
of APOE-TOMM40-APOC1 locus by PPARγ. The second is
related to the effect of APOE4 on brain energy preference
including how weight loss later in life increases cognitive decline
among APOE4 carriers.

The Resistance of APOE4 Carriers to
Drugs Targeting the PPAR-LXR/RXR-APOE
System
The challenge with the blunted induction of PPARγ pathways in
APOE4 carriers is clearly illustrated in several clinical trials using
PPARγ or RXR agonists for cognitive and AD-related outcomes.
In one randomized clinical trial, 511 subjects with mild-to-
moderate AD were randomized to groups receiving placebo or
2, 4, or 8 mg rosiglitazone (PPARγ agonist) for 24 weeks (Risner
et al., 2006). At week 24, the subjects were evaluated for mean
change from baseline in the Alzheimer’s Disease Assessment
Scale–Cognitive subscale (ADAS-Cog) battery and Clinician’s
Interview-Based Impression of Change Plus Caregiver Input
global scores. Rosiglitazone at any dose did not significantly
alter cognition by these tests. However, APOE4 non-carriers
showed (n = 323) significant improvement in ADAS-Cog results
at the highest dose of 8 mg rosiglitazone. No improvement
and some decline in mental acuity were observed in APOE4
positive subjects.

The TOMMORROW secondary AD prevention trial
(NCT01931566) tested whether pioglitazone (PPARγ

agonist) would prevent mild cognitive impairment (MCI)
in asymptomatic people at genetic risk for AD (Burns et al.,
2019). It was stopped early after a futility analysis gave it only
a 15% chance of success. The trial enrolled 3, 494 cognitively
normal participants at risk of developing cognitive impairment
(CI) based on an algorithm that weighed their APOE and
TOMM40 genotypes and ages. The primary endpoint was
progression to MCI. Time to progression was the same in both
pioglitazone and placebo groups assessed out to 36 months. The
cognitive composite battery score increased over time in both
groups, while ADCS-ADL scores remained constant. More than
60% of people in the high-risk group had APOE4. The analysis
is underway to understand the APOE genotype effect on the
response to the intervention.

Another clinical trial that targeted the RXR transcription
pathway was Beat-AD. Beat-ADwas a double-blind, randomized,
placebo-controlled, parallel-group study that examined the effect
of a single dose (300 mg/day) of bexarotene in 20 participants
with early AD (Cummings et al., 2016). The primary outcome
(brain amyloid index) did not change after 1 month of treatment.
However, a preplanned secondary analysis revealed a decrease in
the brain amyloid index in APOE4 non-carriers. These changes
were correlated with increased plasma Aβ levels, and suggested

a role for bexarotene in non-APOE4 carriers (Cummings et al.,
2016). In summary, three trials using PPARγ or RXR agonists
were not effective in slowing the progression to MCI or AD. Two
out of these three trials suggest an APOE genotype effect: APOE4
blunted the response to these interventions on cognitive and AD
biomarker outcomes.

APOE4 Brain Fuel Preferences and
Response to Diet
The lower brain glucose metabolism and the increased
mitochondrial oxidation of PUFAs in older APOE4 carriers
suggest a role for dietary fat as brain fuel. In a small pilot
trial, older APOE4 carriers with cognitive impairment (CI)
appeared to respond to an increase in dietary fat intake for
cognitive functions. In this study, 46 older adults with either
CI or normal cognition (NC) ingested a LOW (25% total fat)
and a HIGH-fat meal (50% total fat) in an acute and blinded
random fashion. Acute high-fat feeding improved measures of
cognition and plasmaADbiomarkers in E4 carriers but worsened
these biomarkers in E4 noncarriers (Hanson et al., 2015). These
findings were driven by CI impaired and not theNC group. There
were no differences in LDL-C after this acute fat intervention.
Findings from this pilot trial, however, need to be replicated in a
larger study but they underscore the differential response by both
APOE genotype and cognitive state to high-fat ingestion. These
findingsmay be counter-intuitive given thatAPOE4 carriers have
higher LDL-C levels and that saturated fat intake can modestly
increase levels of LDL-C. Interestingly, APOE4 also modulates
the effect of switching from a high-fat diet to a low-fat diet on
plasma cholesterol levels: APOE4 carriers who switched from a
high-fat diet to low fat and low glycemic index high carb diet had
greater reductions in LDL-C (Griffin et al., 2018).

Older APOE4 carriers with CI also show resistance to
improvement from a ketogenic diet. Two interventions
demonstrated that APOE4 carriers do not benefit from a
ketogenic diet (Reger et al., 2004; Henderson et al., 2009). In one
of these interventions (Henderson et al., 2009), 152 participants
with mild AD were randomized to AC-1202 to rapidly elevate
serum ketone bodies or placebo. The intervention resulted
in modest differences in ADAS-Cog scores compared to
the placebo. However, the effects were only seen in APOE4
negative subjects who were compliant with the intervention.
Understanding the type of diet that the brain of older APOE4
carriers utilize as fuel would be a priority for future studies.

The Cognitive Vulnerability of Older
APOE4 Carriers to Weight Loss
Clinical trial evidence suggests that APOE4 increases cognitive
vulnerability to weight loss. The Look AHEAD trial was
a single-blinded, randomized, controlled trial that recruited
5,145 individuals who were overweight or obese and had
type 2 diabetes. Participants underwent an Intensive Lifestyle
Intervention (ILI) or Diabetes Support and Education (DSE)
intervention. Cognitive outcomes were assessed 10–13 years
after enrollment. The intervention did not affect cognitive
outcomes (Espeland et al., 2017; Rapp et al., 2017). In a subgroup
analysis, we observed a significant interaction between the
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onset of menopause, APOE4, and the intervention on cognitive
scores. Older postmenopausal women had worse cognitive
scores in the ILI group compared with the DSE group. In
contrast, younger pre- or early postmenopausal females had
better cognitive scores in the ILI group compared with the
DSE group. The positive effect of weight loss was only evident
among APOE4 non-carriers (Yassine et al., 2020). These findings
support that weight loss in APOE4 carriers may deprive the
brain of an important source of fuel: fat stored and released
from adipocytes.

A Role for Omega-3 Enriched Diets in
APOE4 Carriers
The effect of APOE4 on omega-3s has been demonstrated
in several elegant animals and human kinetic tracer studies.
Following an omega-3 deficient diet, adipose tissues in
APOE4-TR mice had 40% less omega-3 than APOE3-TR mice.
Human studies also confirm that APOE4 carriers are more
vulnerable to dietary omega-3 deficiency and may require
long term dietary DHA consumption than non-carriers for
maintaining brain DHA supply. Using PET scans, we identified
that brain DHA uptake was 20% greater in younger cognitively
normal APOE4 compared to non-carriers (mean age 35)
suggesting a brain DHA deficit that is compensated with a
higher plasma to brain DHA delivery (Yassine et al., 2017b;
Figure 5). Since the brain does not have an efficient mechanism
to store fat, any compromise in adipose ω-3 stores can affect
brain delivery.

Some evidence reveals that the APOE genotype affects the
response to ω-3 supplementation, although some of these

FIGURE 5 | Docosahexaenoic acid (DHA) brain uptake by APOE4 carrier
state. Cognitively healthy younger APOE4 carriers had greater brain DHA
uptake using an 11C-DHA PET scan. *p < 0.05. Adapted from Yassine et al.
(2017b).

results are inconsistent. Some observational studies do not
reveal an effect of APOE status on the association of ω-3 with
cognitive outcomes (Beydoun et al., 2007; Krüger et al., 2009;
Rönnemaa et al., 2012). We reported an inverse association
between low serumDHA levels and cerebral amyloidosis in older
non-demented participants independent of APOE genotype
(Yassine et al., 2016a). In some observational studies, the
benefit of increased seafood or ω-3 consumption on cognition
was restricted to APOE4 non-carriers (Huang et al., 2005;
Barberger-Gateau et al., 2007; Whalley et al., 2008; Daiello,
2015), and in particular those with limited seafood intake
(<1 serving/week; Huang et al., 2005; Barberger-Gateau et al.,
2007). The ADCS-sponsored DHA trial reported a null effect
on cognitive outcomes, but a pre-planned analysis revealed
cognitive benefit (using ADAS-cog scale) in the DHA treatment
arm in APOE4 non-carriers (Quinn et al., 2010).

In other studies, the benefit was restricted to APOE4 carriers
(Laitinen et al., 2006; van de Rest et al., 2008; Stonehouse et al.,
2013; Morris et al., 2016). In two of those studies, the beneficial
response inAPOE4 carriers was observed in younger participants
(Stonehouse et al., 2013), mean age = 33, randomized clinical
trial, and (Laitinen et al., 2006), mean age = 50, an observational
cohort with 20-year follow-up. In a cross-sectional study of
deceased participants from the Rush Memory and Aging Project
(Morris et al., 2016), participants were dementia-free at study
entry and underwent annual clinical neurological evaluations
and brain autopsy at death with a mean follow-up duration of
8 years. Individuals who were APOE4 carriers and consumed at
least 1 seafood meal per week or had higher intakes of long-chain
ω-3 fatty acids had less AD neuropathology post-mortem
compared with those who consumed lower amounts.

We reported in the ADCS-sponsored DHA clinical trial that
baseline CSFDHA levels were lower inAPOE4 carriers compared
with APOE2 carriers (Yassine et al., 2016b). After treatment, we
observed lower DHA levels in persons with more advanced brain
disease as determined by the lowest tertile of CSF Aβ42 levels,
(Figure 6; Yassine et al., 2016b). APOE4 changes also included
a lower increase in plasma DHA and eicosapentaenoic acid
(EPA) ratio to arachidonic acid (AA) after supplementation
(Tomaszewski et al., 2020). These findings agree with
preclinical studies in 13-month-old APOE-TR mice, where
brain DHA levels were lower in APOE4-TR mice compared
with APOE2-TR mice (Vandal et al., 2014). Accordingly, we
proposed a complex interaction between APOE4 status and
disease stage, such that the response to ω-3 supplementation
in APOE4 carriers depends on whether supplementation
precedes the onset of neurodegeneration (Yassine et al.,
2017a), and requires high dose supplementation and a long
term intervention.

Among the best-studied diets for AD prevention is the
Mediterranean diet. This diet differs by Mediterranean countries
but generally characterized especially by high consumption
of vegetables, polyunsaturated fat (fish and nuts), olive oil,
and moderate consumption of protein. Most studies have
demonstrated cognitive or AD biomarker benefits of the
Mediterranean diet despite modest effects on weight (Tsivgoulis
et al., 2013; Ngandu et al., 2015; Pelletier et al., 2015). The Finger
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FIGURE 6 | The difference in CSF DHA levels by intervention arm in the
ADCS sponsored DHA clinical trial. Older APOE4 carriers with mild AD had
lower CSF DHA levels after 18 months of DHA supplementation. Adapted
from Yassine et al. (2016b).

trial included APOE genotype as a controlling factor. In this
trial, a multicomponent intervention study involving 2 years of
increased fish consumption, fruits, and vegetables together with
exercise and brain training resulted in a modest improvement in
cognitive outcomes (Ngandu et al., 2015). A subgroup analysis
revealed that APOE4 carriers had a 2.6 fold greater benefit
on the total composite NTB outcome from this intervention
(Solomon et al., 2018), although the interaction between
APOE genotype and intervention arm on cognition was not
statistically significant.

The Multi-domain Alzheimer Prevention Trial (MAPT) was
a three-year intervention trial designed to assess whether a
combined intervention of cognitive stimulation, physical activity,
nutrition, and supplementation with omega-3 polyunsaturated
fatty acids could slow cognitive decline in a population of older
adults at risk for AD. The results of the study, published in
2017, failed to demonstrate a significant slowing of cognitive
decline during the 3-year study period, although subgroup
analyses suggested possible (and modest) benefits for individuals
with elevated brain amyloid accumulation and those who were
carriers of the APOE4 allele (Andrieu et al., 2017).

DESIGNING FUTURE INTERVENTIONS

Given the complex interaction of APOE4 with several genetic
and environmental factors that shape the response to

diet, we propose considering novel designs for nutritional
clinical trials aiming to improve cognitive outcomes in
APOE4 carriers.

1) Specific recruitment and stratification byAPOE4 carrier status,
with sample sizes sufficient to allow detecting an APOE4 by
treatment interaction

2) Utilization of brain-specific biomarkers to predict the response
of intervention before conducting large and extensive trials.
For example, given the greater DHA brain uptake in APOE4
carriers shown in Figure 4 (Yassine et al., 2017b), the efficacy
of PUFA enriched diets can be guided by change in brain
DHA PET uptake. Other imaging modalities such as ketone,
glucose, AA, and other PET imaging modalities can guide
a choice of specific diets. There is an urgent need for less
invasive brain-specific nutrient biomarker panels to guide
larger trials.

3) Since the risk of disease in APOE4 is affected by complex
interactions, trials would need to include other risk factors
(sex, race, obesity, menopausal state, or coinheritance of other
gene variants) for resolution of both the APOE4 and the
treatment effects.

4) APOE4 disease risk appears to start at a very early age. New
cognitive outcomes are needed to identify the earliest stages of
disease for preventive measures before the onset of irreversible
neurodegenerative changes.

5) Given the blunted PPARγ response in APOE4 carriers, we
should consider combining pharmacotherapy to restore the
PPARγ signaling response in APOE4 carriers to weight loss
with exercise interventions.

6) Development of selective PPARγ signaling molecules that
uncouple the co-expression of bioenergetic/insulin-sensitizing
PPARγ program from APOE expression may be useful for
drug development

7) Enhancing apoE recycling by reducing apoE aggregation (for
example through increasing HDL3 or by ABCA1 agonists)
may have downstream benefits on cellular energy preferences
and the response to the diet on the brain.

SUMMARY

In summary, carrying the APOE4 allele poses an increased
risk of neurodegenerative, cerebrovascular, and cardiovascular
disease with aging that is race and sex-specific. APOE4 continues
to dazzle the scientific community and represents both an
opportunity and a challenge. APOE4 affects cellular preferences
for energy during aging with preclinical and clinical evidence
indicating a shift from glucose to PUFA fatty acids as a
source of energy, increasing the susceptibility of the brain to
disease when ω-3 intake is restricted. However, the effects
of APOE4 on aging are complex and differ by sex, race,
and the environment. The gene by environment interactions
on the predisposition of APOE4 to disease requires more
sophisticated interventions. APOE genotype has a complex
relationship with inflammation that differs by race and region.
APOE4 carriers with markers of chronic inflammation appear
to be protected in some studies against infections but possess
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a greater risk of dementia in others. Therefore, a greater
understanding of how the environment affects the susceptibility
to disease in some but not all APOE4 carriers requires more
targeted and personalized approaches. Over the next decades,
APOE personalized strategies will better guide our approach
in reclassifying and targeted managing of APOE4 associated
aging diseases.
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