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C O R O N A V I R U S

Air pollution and COVID-19 mortality in the United 
States: Strengths and limitations of an ecological 
regression analysis
X. Wu1*, R. C. Nethery1*, M. B. Sabath1, D. Braun1,2, F. Dominici1†

Assessing whether long-term exposure to air pollution increases the severity of COVID-19 health outcomes, 
including death, is an important public health objective. Limitations in COVID-19 data availability and quality 
remain obstacles to conducting conclusive studies on this topic. At present, publicly available COVID-19 outcome 
data for representative populations are available only as area-level counts. Therefore, studies of long-term expo-
sure to air pollution and COVID-19 outcomes using these data must use an ecological regression analysis, which 
precludes controlling for individual-level COVID-19 risk factors. We describe these challenges in the context of 
one of the first preliminary investigations of this question in the United States, where we found that higher historical 
PM2.5 exposures are positively associated with higher county-level COVID-19 mortality rates after accounting for 
many area-level confounders. Motivated by this study, we lay the groundwork for future research on this important 
topic, describe the challenges, and outline promising directions and opportunities.

INTRODUCTION
The suddenness and global scope of the coronavirus disease 2019 
(COVID-19) pandemic have raised urgent questions that require 
coordinated investigation to slow the disease’s devastation. A critically 
important public health objective is to identify key modifiable environ-
mental factors that may contribute to the severity of health outcomes 
[e.g., intensive care unit (ICU) hospitalization and death] among 
individuals with COVID-19. Numerous scientific studies reviewed 
by the U.S. Environmental Protection Agency (EPA) have linked 
fine particles (PM2.5; particles with diameter, ≤ 2.5 m) to a variety 
of adverse health events (1) including death (2). It has been hypothe-
sized that because long-term exposure to PM2.5 adversely affects 
the respiratory and cardiovascular systems and increases mortality 
risk (3–5), it may also exacerbate the severity of COVID-19 symp-
toms and worsen the prognosis of this disease (6).

Epidemiological studies to estimate the association between 
long-term exposure to air pollution and COVID-19 hospitalization 
and death is a rapidly expanding area of research that is attracting 
attention around the world. Two studies have been published using 
data from European countries (7, 8), and many more are available 
as preprints. However, because of the unprecedented nature of the 
pandemic, researchers face serious challenges when conducting these 
studies. One key challenge is that, to our knowledge, individual-level 
data on COVID-19 health outcomes for large, representative popula-
tions are not publicly available or accessible to the scientific com-
munity. Therefore, the only way to generate preliminary evidence 
on the link between PM2.5 and COVID-19 severity and outcomes 
using these aggregate data is to use an ecological regression analysis. 
With this study design, publicly available area-level COVID-19 
mortality rates are regressed against area-level air pollution concentra-
tions while accounting for area-level potential confounding factors. 
Here, we discuss the strengths and limitations of conducting eco-

logical regression analyses of air pollution and COVID-19 health 
outcomes and describe additional challenges related to evolving 
data quality, statistical modeling, and control of measured and un-
measured confounding, paving the way for future research on this 
topic. We discuss these challenges and illustrate them in the context 
of a specific study, in which we investigated the impact of long-term 
PM2.5 exposure on COVID-19 mortality rates in 3089 counties in 
the United States, covering 98% of the population.

Illustration of an ecological regression analysis of historical 
exposure to PM2.5 and COVID-19 mortality rate
We begin by describing how to conduct an ecological regression anal-
ysis in this setting. COVID-19 death counts (a total of 116,747 deaths) 
were obtained from the Johns Hopkins University Coronavirus 
Resource Center and were cumulative up to 18 June 2020. We used 
data from 3089 counties, of which 1244 (40.3%) had reported zero 
COVID-19 deaths at the time of our analysis. Daily PM2.5 concen-
trations were estimated across the United States on a 0.01° × 0.01° grid 
for the period 2000–2016 using well-validated atmospheric chemistry 
and machine learning models (9). We used zonal statistics to aggregate 
PM2.5 concentration estimates to the county level and then averaged 
across the period 2000–2016 to perform health outcome analyses. 
Figure 1 illustrates the spatial variation in 2000–2016 average (here-
after referred to as “long-term average”) PM2.5 concentrations and 
COVID-19 mortality rates (per 1 million population) by county.

We fit a negative binomial mixed model using COVID-19 mortality 
rates as the outcome and long-term average PM2.5 as the exposure 
of interest, adjusting for 20 county-level covariates. We conducted 
more than 80 sensitivity analyses to assess the robustness of the 
findings to various modeling assumptions. We found that an in-
crease of 1 g/m3 in the long-term average PM2.5 is associated with 
a statistically significant 11% (95% CI, 6 to 17%) increase in the 
county’s COVID-19 mortality rate (see Table 1); this association 
continues to be stable as more data accumulate (fig. S3). We also 
found that population density, days since the first COVID-19 case 
was reported, median household income, percent of owner-occupied 
housing, percent of the adult population with less than high school 
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education, age distribution, and percent of Black residents are im-
portant predictors of the COVID-19 mortality rate in the model. 
We found a 49% (95% CI, 38 and 61%) increase in COVID-19 mortality 
rate associated with a 1-SD (per 14.1%) increase in percent Black resi-
dents of the county. Details on the data sources, statistical methods, 
and analyses are summarized in the Supplementary Materials. All data 
sources used in the analyses, along with fully reproducible code, are 
publicly available at https://github.com/wxwx1993/PM_COVID. 

Strengths and limitations of an ecological  
regression analysis
Ecological regression analysis provides a simple and cost-effective 
approach for studying potential associations between historical ex-
posure to air pollution and increased vulnerability to COVID-19 in 
large representative populations, as illustrated in our study in the 

previous section. This approach is regularly applied in many areas 
of research (10). Using our study as an example, we summarize 
in Table 2 the strengths, limitations, and opportunities considering 
(i) study design, (ii) COVID-19 health outcome data, (iii) historical 
exposure to air pollution, and (iv) measured and unmeasured 
confounders, with the goal of paving the way for future research.

Among the key limitations, by design, ecological regression 
analyses are unable to adjust for individual-level risk factors 
(e.g., age, race, and smoking status); when individual-level data are 
unavailable, this approach leaves us unable to make conclusions re-
garding individual-level associations. In the context of COVID-19 
health outcomes, this is a severe limitation, as individual-level risk 
factors are known to affect COVID-19 health outcomes. It is im-
portant to note that confusion between ecological associations and 
individual associations may present an ecological fallacy. In extreme 

Fig. 1. National maps of historical PM2.5 concentrations and COVID-19 deaths. Maps show (A) county-level 17-year long-term average of PM2.5 concentrations (2000–2016) 
in the United States in g/m3 and (B) county-level number of COVID-19 deaths per 1 million population in the United States up to and including 18 June 2020.
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cases, this fallacy can lead to associations detected in ecological 
regression that do not exist or are in the opposite direction of true 
associations at the individual level. However, ecological regression 
analyses still allow us to make conclusions at the area level, which 
can be useful for policy-making (11). For the association between 
COVID-19 health outcomes and PM2.5 exposure, we argue that 
area-level conclusions are valuable, as they can inform important 
immediate policy actions that will benefit public health, such as 

(i) prioritization of precautionary measures [e.g., personal protec-
tive equipment (PPE) allocations and hospital beds] to areas with 
historical higher air pollution and (ii) further strengthening the scien-
tific argument for lowering the U.S. National Ambient Air Quality 
Standards for PM2.5 and other pollutants. To completely avoid 
potential ecological bias, a representative sample of individual-level 
data is necessary. While this may not be feasible in the near future, 
as some COVID-19 outcome data become available at the indi-
vidual level, existing approaches that augment county-level data 
with individual- level data (12) could be used to correct for eco-
logical bias.

Furthermore, air pollution exposure misclassification, due to 
between-area mobility and within-area variation, is another potential 
source of bias that could affect the ecological regression results de-
scribed in our example study. Methods to account for the propaga-
tion of exposure error into the ecological regression model (13) 
could be applied to help mitigate the impact of measurement error. 
Outcome misclassification is another limitation that can be partially 
overcome by accessing nationwide registry data with the validated 
cause of death (14). As in all observational studies, adjustment 
for measured and unmeasured confounding presents another key 
challenge in ecological regression analyses, which may be exacerbated 
when dealing with dynamic pandemic data, as in our study. Con-
ducting studies using both traditional regressions and methods for 
causal inference as in Wu et al. (2) is necessary to assess the robust-
ness of the findings.

Increasing the scientific rigor of research in this area requires 
access to representative, individual-level data on COVID-19 health 
outcomes, including information about patients’ residential address, 
demographics, and individual-level confounders. This is an enormous 
challenge that will require consideration of many privacy, legal, and 
ethical trade-offs (14). Future areas of research also include the 
application of statistical methods to quantify and correct for ecolog-
ical bias and measurement error, reproducible methods for causal 
inference, and sensitivity analysis of measured and unmeasured 
confounding bias as suggested above. These strengths and limita-
tions are illustrated further in the context of our own study (see the 
Supplementary Materials).

DISCUSSION
Ecological regression analyses are crucial to stimulate innovations 
in a rapidly evolving area of research. Ongoing research has already 
focused on overcoming some aspects of these limitations (8, 15). 
For example, ecological regression analysis of air pollution and 
COVID-19, using data with finer geographic resolution, is being 
conducted for different countries and regions around the world. 
Cole et al. (8) published an ecological regression analysis using data 
in Dutch municipalities and found results consistent with our own 
investigation; the California Air Resources Board (CARB) is planning 
to conduct a similar study at the census tract level (15). Although an 
ecological regression analysis cannot provide insight into the mech-
anisms underlying the relationship between PM2.5 exposure and 
COVID-19 mortality, studies are starting to shed light on the potential 
biological mechanisms that may explain the relationship between 
air pollution and viral infection outcomes (16). For example, it has 
been hypothesized that chronic exposure to PM2.5 causes alveolar 
angiotensin-converting enzyme 2 (ACE-2) receptor overexpression 
and impairs host defenses (17). This could cause a more severe form 

Table 1. Mortality rate ratios (MRR), 95% confidence intervals (CI), 
and P values for all variables in the main analysis. Details of the 
statistical models are available in section S2. Q, quintile.  

MRR 95% CI P value

PM2.5 1.11 (1.06–1.17) 0.00

Population density 
(Q2) 0.91 (0.71–1.15) 0.42

Population density 
(Q3) 0.91 (0.71–1.16) 0.45

Population density 
(Q4) 0.74 (0.57–0.95) 0.02

Population density 
(Q5) 0.92 (0.69–1.23) 0.56

% In poverty 1.04 (0.96–1.12) 0.31

Log(median house 
value) 1.13 (0.99–1.29) 0.07

Log(median 
household income) 1.19 (1.04–1.35) 0.01

% Owner-occupied 
housing 1.12 (1.04–1.20) 0.00

% Less than high 
school education 1.20 (1.10–1.32) 0.00

% Black 1.49 (1.38–1.61) 0.00

% Hispanic 1.06 (0.97–1.16) 0.23

% ≥ 65 years of age 1.04 (0.93–1.17) 0.46

% 45–64 years of 
age 0.77 (0.67–0.90) 0.00

% 15–44 years  
of age 0.76 (0.68–0.85) 0.00

Days since 
stay-at-home order 1.18 (0.92–1.52) 0.20

Days since first case 2.40 (2.05–2.80) 0.00

Rate of hospital 
beds 1.00 (0.93–1.08) 0.95

% Obese 0.96 (0.90–1.03) 0.32

% Smokers 1.13 (1.00–1.28) 0.05

Average summer 
temperature (°F) 1.11 (0.95–1.30) 0.20

Average winter 
temperature (°F) 0.86 (0.69–1.07) 0.19

Average  
summer relative 
humidity (%)

0.93 (0.80–1.09) 0.38

Average  
winter relative 
humidity (%)

0.97 (0.87–1.07) 0.52
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Table 2. Strengths and limitations of ecological regression analyses applied to research on air pollution and COVID-19 and opportunities for  
future research.  

Strengths Limitations Future research

Study design: ecological regression Feasible, timely, and cost-effective Cannot be used to make inference 
about individual-level 
associations, doing so leads to 
ecological fallacy

Augment county-level data with 
individual-level data to adjust for 
ecological bias (12)

Data are representative of the entire 
U.S. population

Cannot adjust for individual-level risk 
factors such as age, gender, and 
race (19–21)

Conduct studies of individual-level 
health records using traditional 
regression and causal inference 
methods as in Wu et al. (2)Allows inference at the area level, 

which can be useful for 
policy-making (11)

Results are sensitive to the 
assumptions of the statistical 
model (11)

Computationally efficient and can be 
conducted daily to allow for the 
dynamic nature of the data and 
observe temporal trends; see fig. S3

Facilitates comparison of results 
across countries

Outcome: COVID-19 deaths 
aggregated at the county level

Publicly available data updated 
almost daily

Potential for outcome misclassification 
(22), particularly differential 
misclassification over time and 
space, which could bias results

Access to nationwide registry data with 
the validated cause of death (14)

Analyses using county excess deaths 
as the outcome (23)

Exposure: 2000–2016 average 
exposure to PM2.5 at the county 
level

Use of well-validated atmospheric 
chemistry models and machine 
learning models (9, 24)

Aggregation assumes that everyone 
in a county experiences the same 
exposures, leading to exposure 
misclassification, especially for the 
largest counties

Individual-level data on COVID-19 
deaths with geocoded addresses 
to link to air pollution data at the 
place of residence

PM2.5 exposure estimated at fine 
grids, which can be aggregated to 
the county level to assess exposure 
even in unmonitored areas (24)

Can be used to assess historical 
exposures to air pollution but not 
real-time exposures

Additional statistical methods to 
account for the propagation of 
exposure error into the ecological 
regression model (13)

As opposed to using monitor data, 
aggregation of modeled estimates 
ensures that county PM2.5 
exposure estimates represent the 
distribution across the entire area

Measured confounders More than 20 area-level variables 
capture age distribution, race 
distribution, socioeconomic 
status, population density, 
behavioral risk factors, epidemic 
stage, and stay-at-home orders 
(see tables S1 and S2)

County average features may not 
represent the features of 
COVID-19 patients, leading to 
inadequate adjustment

Causal inference approaches to 
adjust for measured confounding 
bias, producing results that are 
less sensitive to statistical 
modeling assumptions

These overlap with the confounder 
sets used in much of the previous 
literature on air pollution and 
health (25, 26)

Difficult to formalize the notion of 
“epidemic stage,” which may be 
an important confounder

The threat of unmeasured 
confounding bias still present

Causal inference approaches to 
assess covariate balance (2)

Sensitive to the form of the statistical 
model specified (i.e., assumptions of 
linearity and no effect modification)

Individual-level data on key 
measured confounders such as 
smoking and body mass index

Unmeasured confounders Leverage existing approaches, such 
as the calculation of the E-value 
(27), to assess how strong the 
effect of an unmeasured 
confounder would need to be to 
explain away the associations 
detected (see section S3)

The most important threat to the 
validity of any observational study

Natural experiment designs and 
instrumental variables can be 
used to reduce the threat of 
unmeasured confounding but are 
less common

Even measures like the E-value 
cannot inform us about the 
likelihood that a strong 
unmeasured confounder exists; 
this must be evaluated on the 
basis of subject matter knowledge
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of COVID-19 in ACE-2–depleted lungs, increasing the likelihood 
of poor outcomes, including death (18).

The associations detected in ecological regression analyses provide 
strong justification for follow-up investigations as more and higher- 
quality COVID-19 data become available. Such studies would include 
validation of our findings with other data sources and study types, 
as well as investigations into mediating factors and effect modifiers, 
biological mechanisms, impacts of PM2.5 exposure timing, and re-
lationships between PM2.5 and other COVID-19 outcomes such as 
hospitalization. Research on how modifiable factors may exacerbate 
COVID-19 symptoms and increase mortality risk is essential to guide 
policies and behaviors to minimize fatality related to the pandemic. 
Such research could also provide a strong scientific argument for 
revision of the U.S. Ambient Air Quality Standards for PM2.5 and 
other environmental policies in the midst of a pandemic.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/45/eabd4049/DC1
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