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H I G H L I G H T S  

• The correlations between carbonaceous PM2.5 and criteria gaseous pollutants were explored. 
• The tailpipe emissions decreased during the study period in central Los Angeles. 
• SOA and O3 were highly correlated as they have the same precursors and formation pathways. 
• The decrease in NO2 levels were faster than EC levels due to California regulations.  
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A B S T R A C T   

The main objective of this study was to explore the correlations between carbonaceous PM2.5 species (i.e., pri
mary and secondary organic aerosols (POAs and SOAs) and elemental carbon (EC)) with various criteria gaseous 
pollutants over the 2015–2019 period in order to devise a simple way of estimating the 24-hr concentration of 
these PM species in central Los Angeles. The Positive Matrix Factorization (PMF) model was used to determine 
the contribution of various sources to organic carbon (OC) and its volatility fractions (OC1-OC3) in the atmo
sphere in years of 2015, 2017, and 2019. A 5-factor solution that includes vehicular exhaust emissions (traced by 
EC and OC1), non-tailpipe emissions (characterized by Ti, Cu, and Zn), SOAs (identified by sulfate and ozone), 
biomass burning (associated with high loadings of K+/K), and local industrial activities (traced by Cr) was 
identified as the most physically interpretable solution for each of the investigated years. The SOA concentrations 
determined using the PMF model output and the POA concentrations, calculated by subtracting the SOA con
centrations from the total OC mass, were employed in our regression analysis with criteria gaseous pollutants, the 
concentrations of which are routinely reported by the air quality agencies. The result of the regression analysis 
revealed high correlation between the concentrations of SOA and ozone (R2 > 0.74) in different years, probably 
because they are originated from synchronized photochemical reactions in the atmosphere. The SOA/O3 ratios 
were between ∼47-56 μg/m3/ppm in the time period of 2015–2019. A strong correlation between POA and CO 
was also observed (R2 > 0.70); the POA/CO ratios decreased from about 6.5 to 5 μg/m3/ppm from 2015 to 2019, 
which is consistent with the trend of tailpipe emission contributions to total OC concentrations in our monitoring 
site. EC was also strongly correlated with NO2 (R2 > 0.73) and CO (R2 > 0.70) because they are emitted from the 
same combustion sources (e.g., vehicular emissions in central Los Angeles). Our results show persistent and 
significant correlations between the concentrations of criteria gaseous pollutants and carbonaceous PM2.5 species 
(i.e., POA, SOA, and EC) in different years, offering a straightforward approach to estimate the 24-h average 
concentration of these PM species in central Los Angeles.   

1. Introduction 

Numerous toxicological and epidemiological studies have provided 

compelling evidence linking exposure to ambient particulate matter 
(PM) with adverse health outcomes, including neurodegenerative effects 
as well as respiratory and cardiovascular diseases (Berger et al., 2018; 
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Davis et al., 2013; Gauderman et al., 2015; Mabahwi et al., 2014; Pope 
et al., 2004; San Tam et al., 2015). Among different size ranges of PM, 
ambient PM2.5 (i.e., particles with aerodynamic diameters <2.5 μm) is of 
particular interest because of its diverse physicochemical characteris
tics, various sources, and higher oxidative capacity (Apte et al., 2018; 
Davidson et al., 2007; Pope et al., 2004; Wang et al., 2016). As strong 
associations between different PM2.5 chemical components and distinct 
health outcomes have been documented earlier (Crilley et al., 2017; 
Song et al., 2007; Taghvaee et al., 2018b), many studies have focused on 
specific PM components to investigate the toxicity and endpoint health 
impacts of ambient PM (Akhtar et al., 2010; Bae et al., 2017; Fang et al., 
2016; Saffari et al., 2015; Tohidi et al., 2020). 

Total particulate carbonaceous material including organic carbon 
(OC), elemental carbon (EC), and carbonate carbon (CC) constitute a 
significant portion of the PM2.5 mass in different urban environments 
(Karanasiou et al., 2011). Several studies in the literature have shown 
strong associations between increased levels of carbonaceous aerosols in 
ambient air and severe impacts on human health as well as the climate 
(Atkinson et al., 2015; Bates et al., 2019; Chylek et al., 2006; Grahame 
and Schlesinger, 2010; Ning et al., 2008). EC is emitted to the atmo
sphere due to incomplete combustion of carbonaceous fuels, biomass 
burning, and cooking (Hasheminassab et al., 2014b; Healy et al., 2017; 
Herich et al., 2011; Schauer, 2003; Zotter et al., 2017). OC is chemically 
mixed with other elements and can either be in the form of primary 
organic aerosol (POA) or secondary organic aerosols (SOA). POA is 
originated directly from primary sources (e.g., traffic emissions and 
biomass burning) while SOA is formed indirectly through photooxida
tion of volatile and semi-volatile organic compounds in the presence of 
sunlight (Chung and Seinfeld, 2002; Jimenez et al., 2009; Ng et al., 
2007; Plaza et al., 2011; Saylor et al., 2015; Zhang et al., 2007). 

Although investigating the formation mechanisms, emission rates, 
and ambient concentrations of POAs and SOAs is important due to their 
distinct physiochemical characteristics and documented health impacts 
(Delfino et al., 2010; Künzi et al., 2015; Liu et al., 2020; Wang et al., 
2017; Xu et al., 2020), there is no straightforward approach to deter
mine and quantify their concentrations in the atmosphere. Receptor 
models, including the chemical mass balance (CMB), which requires a 
priori knowledge of primary sources, and PMF that needs a large number 
of ambient samples compared to CMB model, have widely been used in 
the literature to identify the contribution of POA and SOA sources to the 
total OC concentrations (Altuwayjiri et al., 2021; Soleimanian et al., 
2019a; Stone et al., 2008). It has been reported that using constraints in 
the PMF model significantly reduces the rotational ambiguity of the 
resolved solutions (Norris et al., 2009; Paatero et al., 2002). As the PMF 
software has built-in constraints, it is sometimes deficient in finding 
appropriate factor profiles and contributions (Norris et al., 2009; Paa
tero et al., 2002). In such cases, a priori information about source con
tributions, source profiles, or chemical species ratios can serve as 
additional constraints (Norris et al., 2009). Many studies (Amato and 
Hopke, 2012; Amato et al., 2009; Sturtz et al., 2014) used measured 
profiles from potential source-types to constrain the PMF source factors, 
resulting in better correspondence between the calculated and measured 
abundances. Crespi et al. (2016) and Liao et al. (2015) have also used 
partially-constrained PMF model to constrain a small number of species 
instead of the entire species with multiple time resolutions. Bae et al. 
(2019) employed CMB and PMF models to determine PM2.5 source 
contributions to ambient OC at two urban locations in California’s San 
Joaquin Valley. Shirmohammadi et al. (2016) also applied a hybrid 
molecular marker-based chemical mass balance (MM-CMB) model to 
investigate the source contributions to PM0.25-bound and PM2.5-bound 
OC concentrations in central Los Angeles (CELA). 

Another approach to identifying the POA and SOA concentrations 
has been the EC/OC tracer method in earlier studies (Cabada et al., 
2004; Masiol et al., 2017; Yu et al., 2004). For example, Lim and Turpin 
(2002) investigated the OC and EC hourly data to determine the con
centrations of POA and SOA in Atlanta, GA. They reported that SOA 

contributed up to 46% of measured OC in Atlanta, consistent with the 
observations in the Los Angeles basin. However, these studies are 
expensive and time-consuming since they generally require notably 
large datasets from various species (e.g., organic compounds, metals and 
trace elements, inorganic ions, and gaseous pollutants) with acceptable 
uncertainties in order to obtain statistically robust and physically 
interpretable results from source apportionment models (Manousakas 
et al., 2015). They also require expensive instrumentation and analytical 
costs for the chemical analysis of different species. 

To overcome the above-mentioned challenges, in this study, we 
investigated the correlation between carbonous species in the atmo
sphere obtained from the PMF model and concentration of criteria 
gaseous pollutants reported by air quality agencies, as the means to 
estimate the 24-hr average ambient concentrations of POA and SOA in 
CELA. We utilized the outputs of our comprehensive PMF model for 
different years (i.e., 2015, 2017, and 2019) at CELA to derive linear 
regressions between the carbonaceous species and criteria pollutants. 
The input to our model was provided by the United States Environ
mental Protection Agency (US EPA) through the Chemical Speciation 
Network (CSN). 

2. Methodology 

2.1. Sampling location, period, and instrumentation 

Fig. 1 shows the location of the monitoring site located in CELA 
(34◦03′59.7′′N, 118◦13′36.8′′W). CELA is in the heart of an 18 million 
urban area (i.e., Greater Los Angeles Area, the largest urban area in the 
United States) and is impacted by various types of emission sources such 
as vehicular and industrial (Heo et al., 2013; Mousavi et al., 2018a, 
2019; Shirmohammadi et al., 2017). Previous studies have documented 
that CELA site is representative of a typical urban area in Los Angeles 
(Hasheminassab et al., 2014a). 

The comprehensive PM2.5 chemical composition data as well as 
different air pollutants used in our study were obtained from the 
experimental monitoring conducted by the US EPA as part of the Air 
Quality System (AQS) and CSN database (US EPA, 2019a) for the entire 
years of 2015, 2017, and 2019 from January through December. In our 
study, we focused on these recent years (i.e., 2015–2019) because the 
correlations between different particulate and gaseous pollutants 
strongly depend on the emission sources in the area, and earlier studies 
have documented that due to the implementation of strict air quality 
regulations in California such as development of aftertreatment tech
nologies, chemical composition of air pollutants emitted from the 
sources has significantly changed over the recent years (Biswas et al., 
2009; Herner et al., 2011; Pakbin et al., 2009). 

According to the CSN database, every six days, 24-hr time-integrated 
PM2.5 samples were collected on quartz filters using the URG 3000N 
Carbon Sampler (URG-3000N Carbon Sampler, URG Inc., 3000N 
(module C), USA) with an operational flow rate of 22 L per minute and 
on polytetrafluoroethylene (PTFE) and nylon filters employing a low 
volume Met One Speciation Air Sampling System (SASS, Met One In
struments Inc.,131 OR, USA) with a flow rate of 6.7 L per minute 
(SCAQMD, 2014, 2015). The concentration of EC, OC as well as OC 
volatility fractions were measured utilizing the Desert Research Institute 
(DRI) thermal/optical Carbon Analyzer (DRI thermal/optical carbon 
analyzer, Atmoslytic Inc., model 2001, USA) applying the Interagency 
Monitoring of Protected Visual Environments (IMPROVE_A) thermal 
protocols. The limits of detection (LOD) were equal to 0.45 μg/m3 and 
0.06 μg/m3 for OC and EC, respectively (Desert Research Institute, 
2005). According to this protocol, the OC fractions of the collected PM2.5 
are gradually desorbed from quartz filters as temperatures are ramped 
through different stages: OC1 (<140 ◦C), OC2 (140–280 ◦C), OC3 
(280–480 ◦C). The OC fractions mainly consist of semi-volatile organic 
compounds with different vapor pressures, and their volatility decreases 
from OC1 to OC3 (Chow et al., 1993, 2007). 
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Inorganic Compendium Method IO-3.3 (US EPA, 1999) was used 
applying the energy dispersive X-ray fluorescence (EDXRF) to quantify 
the trace element and metal content of PTFE filters. Ion chromatography 
(IC) was used to determine content of inorganic ions in PM2.5 samples 
collected on nylon filters (US EPA, 1999). In addition to the above
mentioned PM2.5 chemical components, the concentrations of carbon 
monoxide (CO) and ozone (O3) were continuously recorded by means of 
non-dispersive infrared photometry (NDIR) analyzer (AQMS-400, 
Focused Photonics Inc.) and ultraviolet (UV) continuous monitor (49, 
Thermo Environmental Instruments Inc.) (US EPA, 2019b), respectively, 
while the chemiluminescence method was implemented for the deter
mination of NO2 as indicated by the US EPA (Demerjian, 2000), which 
has been discussed in detail elsewhere (Maeda et al., 1980). 

As the above-mentioned data are provided by the US EPA, highest 
standards of quality assurance and control are employed in field and lab 
audits to ensure the quality of the data (Solomon et al., 2014). The field 
audits consist of six parts: (1) determining detailed responsibilities for 
the site operations, (2) safety inspection, (3) confirming the quality of 
the selected site as well as the sampling tools according to EPA stan
dards, (4) maintenance inspection of the sampling site and logbooks, (5) 
quality insurance of the sample handling and proper chain of custody, 
(6) validating appropriate procedures for storage and delivery. More
over, all laboratories analyzing the CSN samples are annually evaluated 
for their chemical analysis reliability using performance evaluation (PE) 
samples provided by the National Analytical Radiation Environmental 
Laboratory (NAREL). These PE samples include the filters and solutions 
with a known quantity of the analyte loadings prepared by NAREL as 
reference. Solutions of anion and cation with known concentrations are 
also used for ion chromatography analysis. Performance audit (PA) 
samples, including National Institute of Standards and Technology 
(NIST) traceable metal weights, are also sent to analytical laboratories. 

Regarding trace elements and metals, PM samples are analyzed 
independently by the US EPA’s National Exposure Research Laboratory 
(NERL) EDXRF facility. Once the audited laboratories analyze the filters, 
they are sent back to NERL for reanalysis to certify that the level of el
ements on filters has not been affected by handling or delivery. In 
addition to the above-mentioned quality assurance procedures, NAREL 
conducts on-site laboratory technical systems audits (Solomon et al., 
2014). 

2.2. Source apportionment analysis 

2.2.1. PMF model 
PMF is a receptor model which has widely been used to identify the 

sources and quantify their contributions to the target variable (here, 
ambient PM2.5-bound OC) (Paatero and Tapper, 1994; Wang et al., 
2019). This multivariate model is used for solving the chemical mass 
balance equation: 

Xij =
∑p

k=1
gikfkj + eij (1)  

where Xij, the mass concentration, refers to the ith sample and the jth 
species and number of factors p. gik stands for the airborne mass con
centration contributed by kth factor to ith sample. fkj indicates jth species 
resolved factor of each source. eij is the model residual error in ith sample 
for jth specie. 

The main goal of the PMF model is to find out the most appropriate 
factor profile and contribution by minimizing the objective function, Q, 
based on the following equation: 

Q=
∑n

i=1

∑m

j=1

(
eij

uij

)2

(2)  

where n and m represent the number of samples and species, uijrefers to 
the uncertainty of the measured mass concentration for the jth species 
and the ith sample. 

The above-mentioned minimization is conducted by assigning non- 
negative values to the factor profiles and contributions as the con
straints of the optimization process (Norris et al., 2014b). The following 
equation was utilized to determine the uncertainties of the input species 
to our PMF model (Paatero et al., 2014): 

σij =
(
0.05×Xij

)
+ DLj (3)  

in which σij is the calculated uncertainty of the ith sample and the jth 
species. DLj indicates the detection limit assigned to the jth species. 

The mass concentration of the species as well as the above- 
mentioned user-defined uncertainty were employed as input to the US 
EPA’s PMF model version 5.0 and the OC concentration was chosen as 

Fig. 1. Location of the monitoring site in central Los Angeles (CELA).  
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the “total variable”. The PMF runs were conducted using the robust 
mode in which the impact of samples with significant uncertainties are 
minimized. To further validate the PMF outputs, we performed different 
uncertainty analyses including the Bootstrap (BS), Displacement (DISP), 
and BS-DISP (Bootstrap + Displacement) tests. 

DISP analysis investigates the effects of rotational ambiguity by 
evaluating the largest range of source profile values without a notable 
increase in PMF objective function (Q), and does not capture the un
certainty of PMF solutions caused by random errors in the data. On the 
other hand, BS analysis includes effects from random errors and partially 
includes effects of rotational ambiguity. Unlike DISP and BS, BS-DISP 
analysis covers to a great extent the effects of random errors and rota
tional ambiguity. Therefore, for modeling errors (e.g., variation of 
source profiles with time, incorrect number of factors, etc.), DISP in
tervals are directly affected; however, BS results are generally robust. In 
combined mode, the results of BS-DISP analysis are more robust 
compared to DISP because the displacements in DISP analysis of BS-DISP 
are not as strong as when performing DISP by itself. (Brown et al., 2015; 
Norris et al., 2014a; Paatero et al., 2014; Reff et al., 2007). 

Based on the results of the BS analysis, our PMF outputs were verified 
because for all the PMF-resolved factors, around 90% of the results were 
re-mapped. Regarding the DISP analysis, our PMF solutions were 
considered reliable without any rotational ambiguity due to the <1% 
drop in the Q value and absence of any factor swap for the dQmax = 4. 
Also, a sensitivity test for different PMF runs with different number of 
factors (Fig. S1) validated our number of factor selection (i.e., 5 factors). 

2.2.2. PMF input 
In the PMF model, different numbers of factors and various extra 

modeling uncertainty values were investigated following a trial-and- 
error approach to identify the most interpretable and statistically 
robust solution for emission sources contributing to the total OC mass 
concentrations. The final number of factors (i.e., 5) were determined 
according to several criteria: 1) Strong correlation (i.e., high linear 
regression R2 value) of predicted versus measured total metal mass 
concentrations, 2) Physically interpretable PMF-resolved source pro
files, 3) Evaluation of the uncertainty analyses on the PMF outputs (BS, 
DISP, and BS-DISP). 

The optimum solution in our model included EC, OC, OCx (i.e., OC1, 
OC2, and OC3), sulfate (SO4

2− ), O3, potassium ion to potassium ratio 
(K+/K), and metal elements such as potassium (K), zinc (Zn), titanium 
(Ti), copper (Cu) and chromium (Cr). Numerous studies have docu
mented EC, OC1, OC2, and OC3 as indicators of gasoline and diesel 
exhaust emissions (Cao et al., 2005; Schauer, 2003; Zong et al., 2016), 
O3 and SO4 as chemical markers of the photochemical reactions and 
secondary aerosols (Heo et al., 2015; Jacob, 1999; Taghvaee et al., 
2018a), K+/K as a frequently used tracer of biomass burning (Lee et al., 
2007; Zhu et al., 2017), Cu and Ti as surrogates of road dust and brake 
abrasion particles (Adamiec et al., 2016; Harrison et al., 2012), and Cr as 
a marker of industrial activities in the area (Mousavi et al., 2018b; 
Propper et al., 2015). 

2.2.3. Linear regression analysis 
The SOA concentrations were determined based on the contribution 

of the “SOA” factor to total OC mass concentrations resolved by the PMF 
model. The POA concentrations were calculated as the difference of total 
OC and PMF-resolved SOA mass concentrations. We then conducted 
linear regression analysis between SOA and POA concentrations and 
different criteria gaseous pollutants reported frequently by air quality 
monitoring stations. The time-integrated data of the gaseous pollutants 
for different years were extracted from CSN database as mentioned 
earlier. We also conducted linear regression analysis between EC and 
gaseous pollutants including CO and NO2. Table S2 shows the standard 
error for SOA and POA linear regression analysis. 

3. Results and discussions 

3.1. PMF source apportionment results 

3.1.1. Number of factors 
Based on the correlation coefficient (i.e., R2) values between the 

predicted and actual total OC mass concentration (R2 > 0.90), our PMF 
model quantified the contributions of 5 factors to the total OC in CELA. 
As it will be elaborately discussed in the following sections, the PMF- 
resolved factors were tailpipe emissions, non-tailpipe emissions, 
biomass burning, SOA, and local industrial activities. The PMF-resolved 
factor profiles for the years 2015, 2017, and 2019 at our monitoring site 
are shown in Fig. 2. Figs. 3 and 4 also represent the relative and absolute 
contributions of the identified sources to the total OC mass concentra
tions for the study location. 

3.1.2. Factor identification 

3.1.2.1. Factor 1: tailpipe emissions. The first factor was associated with 
~50–60% loadings of EC and high loadings of OC1 (i.e., 50–90%). This 
factor also demonstrated ~40–50% and ~30–40% contributions of OC2 
and OC3, respectively (Fig. 2). EC is a well-known tracer of vehicular 
emissions (Mooibroek et al., 2011; Zong et al., 2016), and OC1 has also 
been associated with tailpipe emissions (Cao et al., 2006; Zong et al., 
2016). Moreover, OC2 and OC3 have been reported as the significant 
components of gasoline exhaust (Cao et al., 2006; Zhu et al., 2010), 
which corroborates the vehicular origin of this factor. The factor also has 
a significant contribution to total OC mass in CELA during the whole 
study period, accounting for ~35–45% of total OC mass in the investi
gated site (Fig. 3). Furthermore, the absolute contribution of this factor 
to total OC (Fig. 4 and Table S1) decreased significantly (Pvalue < 0.05) 
from ~1.5 ± 0.20 μg/m3 to 1.0 ± 0.10 μg/m3 over the 2015–2019 
period, which could be due to the adopted strict air quality regulations 
targeting tailpipe emissions in California during the recent years as 
elaborately discussed elsewhere (Altuwayjiri et al., 2021). 

3.1.2.2. Factor 2: non-tailpipe emissions. The second factor was charac
terized by high loadings of Ti, Cu, and Zn (i.e., ~60–80%) (Fig. 2), and 
contributed to a large portion of total OC mass concentration (i.e., 
28–33%) according to Fig. 3. Previous studies documented Ti, Cu, and 
Zn as chemical tracers of particle brake wear, tire wear, and engine 
abrasion (Adamiec et al., 2016; Harrison et al., 2012; Peltier et al., 2011; 
Thorpe and Harrison, 2008). It should be noted that in recent years, 
electric vehicles (EVs) are replacing internal combustion engine vehi
cles. EVs are much heavier than other vehicles, which increases the 
friction between their tires and road surfaces, resulting in higher 
re-suspension of road dust particles (Timmers and Achten, 2016). Bed
dows and Harrison (2021) reported that EVs have approximately 5% 
higher PM2.5 emission factors than euro-6 diesel and petrol equivalent. 
Moreover, Farahani et al. (2021) showed an association between the 
growing use of EVs and the increase of resuspended road dust emissions 
in the area. Therefore, a fraction of non-tailpipe emissions could be 
attributed to EVs in the Los Angeles basin (Kapustin and Grushevenko, 
2020). As shown in Fig. 3, the relative contribution of non-tailpipe 
particles to total OC were 28 ± 2.5% in 2015, 28 ± 2.2% in 2017, and 
33 ± 2.6% in 2019. According to Fig. 4 and Table S1, the absolute 
contributions of non-tailpipe emissions to total OC mass concentrations 
were comparable throughout the study period (Pvalue of 0.12). Altu
wayjiri et al. (2020) reported that the relative (fractional) contribution 
of non-tailpipe emissions to the total OC mass increased during the 
2005–2015 period in CELA. Our findings also demonstrate a similar 
trend from 2015 to 2019, which is most likely attributed to the lack of 
local regulations controlling the non-exhaust emissions in California. 

3.1.2.3. Factor 3: secondary organic aerosols (SOA). The third factor 
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demonstrated 80% contributions of sulfate and approximately between 
45 and 75% contributions of O3 according to Fig. 2, and it is another 
major contributor (>18%) to total OC concentrations in CELA (Fig. 3). 
Based on earlier studies, sulfate (in the form of ammonium sulfate), O3, 
and SOA are formed through concurrent photochemical reactions 
involving hydroxyl radicals (OH− ) in the ambient atmosphere (Carlton 
et al., 2009; Jacob, 1999); thus, O3 and sulfate are regarded as surro
gates of SOA formations in the atmosphere (Heo et al., 2009; Taghvaee 
et al., 2018b). For example, Yuan et al. (2006) have illustrated signifi
cant correlations between the SOA and secondary sulfate concentrations 
at multiple environments in different seasons in Hong Kong. Moreover, 
it has been documented that organic and inorganic secondary aerosols, 
including ammonium sulfate and SOA, are internally mixed in the at
mosphere (Harrison et al., 2016; Huang et al., 2014; Turpin et al., 1991). 
We, therefore, concluded that “SOAs” is an appropriate label for this 
factor. According to Fig. 3, the SOA fractional contribution to total OC 
over the study period remained constant. However, our findings 
revealed that the absolute contribution of this factor to total OC 
decreased overall from 2015 (~0.83 μg/m3) to 2019 (~0.46 μg/m3) 
(Fig. 4 and Table S1). This trend is likely due to the implementation of 
numerous air quality regulations during the study period, which limited 
the emissions of primary organic precursors of secondary aerosols. These 
regulations are elaborately discussed in sections 3.3 and 3.5. 

3.1.2.4. Biomass burning. Other significant contributors to primary OA 

in urban areas are biomass burning and cooking emissions (Crippa et al., 
2013; Mohr et al., 2015; Shah et al., 2018; Sun et al., 2011). The fourth 
factor is represented by high loadings of K+/K (i.e., ~70–80%). The ratio 
of K+/K has previously been used as a tracer of biomass burning emis
sions in metropolitan environments, including CELA (Jung et al., 2014; 
Soleimanian et al., 2019b; Yu et al., 2018). Furthermore, meat cooking 
sources may also emit K+ (Simoneit, 2002). So it is conceivable that 
cooking emissions may also be contributing to this factor since they are 
comparable in magnitude and chemical signature to vehicular emissions 
of POA (e.g., Shah et al. (2018); Mohr et al. (2015); Sun et al. (2011)). 
While it is common to expect higher contributions of biomass burning 
emissions to OC in winter, our results (Fig. S2) showed comparable 
contributions during the warm and cold periods in CELA (Pvalue > 0.16). 
A potential reason for this observation may be attributed to the frequent 
summer time wildfire events in the area (Okoshi et al., 2014; Warneke 
et al., 2012), counteracting the influence of higher wood burning 
emissions during the winter time (Heo et al., 2013; Lee et al., 2007). This 
factor accounts for less than 10% of the total OC mass concentrations 
throughout the study period, according to Fig. 3. 

3.1.2.5. Factor 5: local industrial activities. This factor has ~80–90% 
loading of Cr in its profile and has a negligible contribution to the total 
OC over the investigated period. Previous studies in the literature have 
identified Cr as a tracer of industrial activities (e.g., electroplating, re
fractory, metallurgy, and foundry industries) (Mansha et al., 2012; 

Fig. 2. PMF-resolved factor profiles for (a) 2015; (b) 2017; and (c) 2019.  
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Morrison and Murphy, 2010; Tositti et al., 2014). Similar to the 
observed trend in tailpipe emissions, absolute contributions of this fac
tor to the total OC mass decreased from 0.37 ± 0.1 μg/m3 to 0.06 ± 0.01 
μg/m3 over the 2015–2019 period. 

3.2. Linear regression between SOA and O3 

The results of the regression analysis for 2015, 2017, and 2019 
(Fig. 5) displayed positive associations between PMF-resolved SOA 
factor and O3 in CELA. Our findings revealed that although the SOA 
concentration resolved by the PMF model varied significantly over the 
2015–2019 period, the average SOA/O3 values remained almost con
stant (approximately between ~ 47 and 55 μg/m3/ppm) over the 
investigated period (i.e., 2015 to 2019). 

According to the figure, there was a high correlation (R2 > 0.74) 
between the PMF-resolved SOA concentrations and O3 values, probably 
due to synchronized photochemical reactions producing these species in 
the atmosphere (Carlton et al., 2009; Jacob, 1999). Numerous studies in 
the literature reported that a significant portion of O3 and SOA are 
originated from the same volatile organic compounds (VOCs) in 
different environments (Cui, 2013; Lin et al., 2015; Shin and Jo, 2013; 
Wu et al., 2017). For example, Wu et al. (2017) investigated the O3 and 
SOA formation potential from anthropogenic VOC emissions and re
ported that alkylbenzenes (i.e., a known VOC from anthropogenic 
emissions) accounts for about 40–50% of the total ozone and SOA for
mation in various locations in China during the year 2010. The Cali
fornia Research at the Nexus of Air Quality and Climate Change 
(CalNex) campaign at Pasadena in Los Angeles county, reported an 

increase in total particulate carbon when the primary emissions in the 
area were transported to Pasadena and coincided with an increase in 
secondary pollutants such as acetaldehyde (Bahreini et al., 2012). It has 
been shown that vehicle emissions (especially emissions from gasoline 
vehicles) are the predominant source of light VOCs, including benzene 
(Marr and Harley, 2002; Warneke et al., 2007) in California. Once 
emitted in the air, VOCs undergo reactions with atmospheric oxidants 
and form SOA. In addition, in an air mass, O3 generation arises from OH 
reactions with CO and VOCs (Hayes et al., 2013). While there are 
mitigating policies to decrease the vehicular VOCs, some recent studies 
pointed to the growing importance of volatile chemical products (VCPs) 
as significant contributors to the formation of ozone and SOA due to 
higher reactivity with OH (Li et al., 2018; McDonald et al., 2018). Shah 
et al. (2019) showed that the potential of SOA formation from VCPs is 
larger than that from vehicles (with a ratio of 1.3) in urban environ
ments. In a similar study in Los Angeles, McDonald et al. (2018) reported 
that SOA formed from VCPs (e.g., personal care products) to vehicular 
VOCs has a ratio of 1.4. Consequently, the similarity in formation 
mechanisms of SOA and ozone provides a possible platform for quan
tifying the SOA concentration based on ozone concentrations. Earlier 
studies in the Los Angeles basin showed that ozone exhibited higher 
concentrations on weekends in comparison to weekdays, which stems 
from lower vehicular emissions than non-methane VOC emissions on 
weekends, resulting in higher ozone production and lower ozone 
destruction by nitrogen oxides (Pollack et al., 2012; Warneke et al., 
2013). Similarly, Heo et al. (2015) showed higher SOA formations on 
weekends than weekdays in CELA, corroborating our correlations. These 
observations are expected to be similar to other urban areas in the US, 

Fig. 2. (continued). 
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given that VOC emissions have similar composition and emission rates 
in the US and have followed consistent trends over the past several years 
(Warneke et al., 2007, 2012). 

3.3. Linear regression between POA and CO 

The contributions of POA to OC mass were estimated by subtracting 
the PMF-resolved SOA concentrations from the total OC mass (Turpin 

Fig. 2. (continued). 

Fig. 3. The relative (fractional) contribution of PMF-resolved sources to ambient OC in CELA over the years of 2015, 2017, and 2019.  
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and Huntzicker, 1995; Wu and Yu, 2016). A strong correlation between 
PMF-derived POA concentrations and CO concentrations in CELA (R2 >

0.70) during the study period is shown in Fig. 6. The average POA/CO 
values ranged from approximately 6.5 μg/m3/ppm in 2015 to about 5 
μg/m3/ppm in 2019, in agreement with the trend of tailpipe emission 
contribution to total OC mass in CELA. The ratio of POA/CO in this study 
is lower than the values reported by an earlier study by de Gouw et al. 
(2008) in the northeastern united states in 2004 (9.4 μg/m3/ppm). 
Using a quadrupole mass filter, the authors collected their organic 
matter (OM) onboard a ship and an aircraft employing an Aerodyne 
aerosol mass spectrometer (AMS). The POA/CO ratios estimated in 
earlier studies at Tokyo also using an AMS and in Zurich utilizing the 
solution of 6-factorial PMF were about 11 and 10.4 μg/m3/ppm, 
respectively (Lanz et al., 2007; Takegawa et al., 2006). In addition to the 
different instrumentation and analytical methods employed to estimate 
POA, the POA/CO ratio is affected by the mixture of specific POA 
sources in a given area (e.g., traffic vs biomass combustion), since they 
all emit CO but in different proportions relative to POA, as well as by the 
time period during which these studies were conducted since studies 
published earlier may not incorporate the impacts of subsequent air 
pollution mitigation policies on the CO and POA levels. Therefore, in 
addition to the different sampling methods, these other factors will need 
to be considered when comparing the POA/CO ratios among various 
studies. A possible explanation of the variations between these measured 
ratios is the implementation of various regulations in California tar
geting POA emission sources. Of particular note is the LEV II (CARB, 
2019), which was implemented between 2004 and 2010 and targeted 
vehicles with the model year 2004 and above (Lurmann et al., 2015). In 
addition, other programs including financial incentives for cleaner port 
trucks (2007) have also been implemented to mitigate the air pollution 
generated by mobile sources in the area (Haveman and Thornberg, 
2008; Lee et al., 2012). Hence, there could be reductions in POA faster 
than CO over the years in various parts of the world, which is in 
agreement with the trend of tailpipe emission contributions to total OC 
mass as discussed in Section 3.1.2.1. An equally important justification 
is that the relationship between POA and CO is also expected to depend 
on meteorological factors in different parts around the globe. This is 
because a major fraction of POA consists of semi-volatile species that 
partition to particulate phase upon cooling in the atmosphere (Alam 
et al., 2003), while CO is an inert non-reactive species, often used as a 
tracer of atmospheric dilution and its mixing height (Gamage et al., 
2020; Turnbull et al., 2006). Thus, meteorology plays a major role on the 
POA/CO ratio, with colder temperatures increasing POA concentrations 
to a higher degree than CO, so at colder climates one might observe a 
higher POA/CO ratio because the POA concentration is affected not only 

Fig. 4. Absolute source contributions to ambient OC mass concentrations during the years of 2015, 2017 and 2019 in CELA.  

Fig. 5. Linear regression between PMF-resolved SOA and O3 in: (a) 2015; (b) 
2017; and (c) 2019 in central Los Angeles (CELA). 
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by dilution but also by cooling which favors the partitioning of 
semi-volatile organic species to the particle phase. 

3.4. Linear regression between EC and CO 

Regression lines between CO and EC for CELA over the 2015–2019 
period are illustrated in Fig. 7. According to the figure, we observed high 
correlation (R2 > 0.70) between EC and CO values in the study site, 
corroborating their common origins (i.e., combustion related emis
sions). Previous studies reported that CO and EC are both products of 
incomplete combustion, and indicators of combustion emissions 
(Kirchstetter et al., 1999; Subramanian et al., 2010). We also observed 
that the EC/CO ratios in CELA during years 2015 and 2019 were com
parable (around 2.3 μg/m3/ppm), and consistent with the findings of 
Subramanian et al. (2010) who reported an EC/CO ratio of 2.89 ± 0.89 
μg/m3/ppm in the Mexico City Metropolitan Area. 

3.5. Linear regression between EC and NO2 

Fig. 8 shows the daily correlation of EC and NO2 concentrations in 
the study area over the 2015–2019 period. According to the figure, the 
EC was highly correlated (R2 > 0.73) with NO2, and EC/NO2 ratios were 

comparable (~0.04–0.06 μg/m3/ppb) over the whole period (i.e., 
2015–2019), which is most probably because they are originating from 
the same sources. Previous studies have documented road traffic 
(particularly diesel engines) and other combustion activities as major 
sources of NO2 and EC (Afzal et al., 2012; Pepe et al., 2019; Zhang et al., 
2018). In concert with our observation (Kim et al., 2004), reported 
0.034 μg/m3/ppb as the EC/NO2 ratio during their experimental mea
surements in the vicinity of busy roadways in the San Francisco 
metropolitan area, while Altuwayjiri et al. (2020) reported a ratio of 
0.040 μg/m3/ppb in the city of Milan, Italy. It should be noted that there 
are possible factors for the variations of these estimated ratios, such as 
temporal and spatial variations of measurements, various measurement 
instrumentations, available sources in the study area, and established air 
quality regulations including development of aftertreatment technolo
gies as discussed earlier. In our results, we see an increase of this ratio by 
~50% from 2015 to 2019. This could be explained by the faster 
reduction in NO2 than EC levels, due to regulatory policies targeting NO2 
that have been implemented in California in recent years (Brauer et al., 
2008; Kim et al., 2004). For example, the CA LEV-II program urged 
reduction of major pollutants (e.g., carbon monoxide (CO) and nitrogen 
dioxide (NO2)) emitted from various vehicles (CARB, 2000; Hwang and 
Doniger, 2004). Furthermore, CA LEV III is planning to further reduce 

Fig. 6. Linear regression between PMF-resolved POA and CO in: (a) 2015; (b) 
2017; and (c) 2019 in central Los Angeles (CELA). 

Fig. 7. Linear regression between EC and CO in: (a) 2015; (b) 2017; and (c) 
2019 in central Los Angeles (CELA). 
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the NO2 emissions by 73% by 2025 from 2012 emissions levels (CARB, 
2012). Henneman et al. (2021) studied the relationship between various 
air pollutants and road proximity in the US over long time periods. They 
reported that NO2 decreased by ~0.29 ppb/yr during 2010–2019, while 
EC decreased at a relatively constant rate of ~0.002 μg/m3/yr across 
2000–2019 in the proximity of roadsides. They also suggested that NO2 
emission sources, which are far from the roadside, have also declined 
their emissions since 2010. 

4. Summary and conclusions 

In this study, the PMF model was implemented to determine the 
contributing sources to OC mass concentration in central Los Angeles in 
the period of 2015–2019. We then conducted a regression analysis be
tween elemental, and primary and secondary organic aerosol concen
trations resolved by the PMF model with criteria gaseous pollutants in 
CELA as the means to estimate the 24-hr concentrations of these 
carbonaceous species. Source apportionment results showed that tail
pipe emissions (38.3 ± 4.2%), non-tailpipe emissions (29.7 ± 2.4), and 
SOA (22.3 ± 5.4) were the three dominant sources of total OC concen
tration during the study period in CELA. Moreover, the PMF results 
showed a decrease in the absolute source contribution of tailpipe 

emissions from ~1.5 ± 0.20 μg/m3 to 1.0 ± 0.10 μg/m3 over the 
2015–2019 period, most likely due to the adopted regulations in Cali
fornia. In addition, the regression analysis results revealed a strong 
correlation between SOA and ozone (R2 > 0.74), which is mainly related 
to the same precursors (i.e., VOCs) and formation pathways (i.e., 
photochemical reactions in the atmosphere). The SOA/O3 ratios ranged 
from 47 to 56 μg/m3/ppm in the 2015–2019 period. POA concentrations 
were derived as the difference between total OC and PMF-resolved SOA. 
According to the regression analysis, the POA/CO ratios decreased from 
6.5 to 5 μg/m3/ppm from 2015 to 2019, which is the same as the trend of 
tailpipe emissions to OC mass concentrations in CELA. Lastly, EC was 
highly correlated with CO (R2 > 0.70) and NO2 (R2 > 0.73) further 
corroborating that these species are emitted by the same combustion 
sources. We should note that our results are based on the available data 
in a specific site (i.e., CELA) and generalization of these findings to other 
areas should be done with caution, because the number of factors and 
emission rates of their sources may vary between different areas. 
Moreover, the concentrations of these carbonaceous species will also be 
affected differently by prospective air quality mitigation strategies that 
might vary among different locations and states. Nevertheless, the cor
relations explored in this study were intended to provide a simple 
paradigm for estimating the 24-hr average concentrations of carbona
ceous species (i.e., POA, SOA, and EC) based on the reported concen
trations of criteria gaseous pollutants; our results could easily be 
updated or revisited in the future periodically to incorporate the effects 
of prospective legislative measures and mitigation strategies on the 
concentrations of primary and secondary organic aerosols in Los 
Angeles. 
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