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Abstract

Background. Clarifying the relationship between depression symptoms and cardiometabolic
and related health could clarify risk factors and treatment targets. The objective of this study
was to assess whether depression symptoms in midlife are associated with the subsequent
onset of cardiometabolic health problems.
Methods. The study sample comprised 787 male twin veterans with polygenic risk score data
who participated in the Harvard Twin Study of Substance Abuse (‘baseline’) and the longitu-
dinal Vietnam Era Twin Study of Aging (‘follow-up’). Depression symptoms were assessed at
baseline [mean age 41.42 years (S.D. = 2.34)] using the Diagnostic Interview Schedule, Version
III, Revised. The onset of eight cardiometabolic conditions (atrial fibrillation, diabetes, erectile
dysfunction, hypercholesterolemia, hypertension, myocardial infarction, sleep apnea, and
stroke) was assessed via self-reported doctor diagnosis at follow-up [mean age 67.59 years
(S.D. = 2.41)].
Results. Total depression symptoms were longitudinally associated with incident diabetes (OR
1.29, 95% CI 1.07–1.57), erectile dysfunction (OR 1.32, 95% CI 1.10–1.59), hypercholesterol-
emia (OR 1.26, 95% CI 1.04–1.53), and sleep apnea (OR 1.40, 95% CI 1.13–1.74) over 27 years
after controlling for age, alcohol consumption, smoking, body mass index, C-reactive protein,
and polygenic risk for specific health conditions. In sensitivity analyses that excluded somatic
depression symptoms, only the association with sleep apnea remained significant (OR 1.32,
95% CI 1.09–1.60).
Conclusions. A history of depression symptoms by early midlife is associated with an elevated
risk for subsequent development of several self-reported health conditions. When isolated,
non-somatic depression symptoms are associated with incident self-reported sleep apnea.
Depression symptom history may be a predictor or marker of cardiometabolic risk over
decades.
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Introduction

Physical and mental health interact across the lifespan. Psychiatry
has moved away from a Cartesian perspective that separates mind
from body and toward an integrated biopsychosocial model of
‘empirically based pluralism’ (Kendler, 2012). Many risk factors
affect both physical and mental wellness (Cohen, Edmondson,
& Kronish, 2015; Freitas, Deschênes, Au, Smith, & Schmitz,
2016; Ho et al., 2014; Keyes, 2004; Richard et al., 2017).
Although an extensive literature exists on the comorbidity of
mental and physical health problems, and having a diagnosed
mental disorder is associated with increased risk of a subsequent
medical condition (Momen et al., 2020), the role of psychopath-
ology in the development of physical illness has not yet been as
clearly elucidated. Understanding whether psychopathology
symptoms confer the risk for the onset of physical illness could
have important implications for reducing global disease burden.

Depression has been associated with a range of cardiovascular,
metabolic, and related conditions, including acute coronary
syndrome and coronary artery disease (CAD) (Carney &
Freedland, 2017; Lichtman et al., 2014), cardiovascular disease
(Cohen et al., 2015; Rajan et al., 2020), diabetes (Kan et al.,
2016; Semenkovich, Brown, Svrakic, & Lustman, 2015), erectile
dysfunction (Liu et al., 2018), hypertension (Meng, Chen, Yang,
Zheng, & Hui, 2012), ischemic heart disease (Xian et al., 2010),
sleep apnea (BaHammam et al., 2016; Harris, Glozier,
Ratnavadivel, & Grunstein, 2009), and stroke (Pan, Sun,
Okereke, Rexrode, & Hu, 2011). Depressed mood has been iden-
tified as an independent risk factor for cardiovascular problems,
including myocardial infarction, CAD, cerebrovascular diseases,
and cardiovascular disease (Van der Kooy et al., 2007; van
Marwijk, van der Kooy, Stehouwer, Beekman, & van Hout,
2015). Additionally, current clinical recommendations acknow-
ledge that depression may confer risk for poor prognosis among
patients with acute coronary syndrome (Lichtman et al., 2014).
The interaction of depression symptoms with cardiometabolic
abnormalities has been found to increase the risk of type 2 dia-
betes in patients over age 50 (Freitas et al., 2016). These findings
suggest that depression symptoms may play a role in the onset,
course, and/or outcome of cardiovascular and metabolic patho-
physiology. A recent large-scale study found an association
between depression symptoms and incident cardiovascular
disease independent of traditional risk factors for non-
communicable diseases (Rajan et al., 2020). However, the rela-
tionship between depression symptoms and cardiometabolic
health may not be causal; instead, depression symptoms, particu-
larly somatic symptoms such as sleep problems, may covary with
cardiometabolic health without playing a causal role (Meijer,
Zuidersma, & de Jonge, 2013). It is important to consider the
possibility that non-causal mechanisms may underlie associations
between depression and cardiometabolic conditions.

Previous research has suggested that somatic (e.g. fatigue,
insomnia, and appetite disturbance) and non-somatic depression
symptoms may be differentially associated with cardiometabolic
outcomes. A 2014 meta-analysis reported that, among patients
with heart disease, somatic/affective symptoms, but not cogni-
tive/affective symptoms, were associated with adverse cardiovas-
cular outcomes (de Miranda Azevedo, Roest, Hoen, & De
Jonge, 2014). However, both somatic and cognitive dimensions
of depression symptoms were independently associated with
risk for new cardiac events in a recent study of heart disease
patients (Norton et al., 2020). Somatic depression symptoms,

both before and after the incidence of cardiovascular disease,
have been associated with increased mortality (Freak-Poli,
Ikram, Franco, Hofman, & Tiemeier, 2018). Somatic and non-
somatic depression symptoms may therefore play differential
roles in relation to cardiometabolic health.

Little research has examined genetic influences on the relation-
ship between depression symptoms and cardiometabolic health.
However, there is significant genetic overlap between depression
and type 2 diabetes (Kan et al., 2016), and recent genetic evidence
from Mendelian randomization suggests that major depressive
disorder (MDD) causally influences CAD but not vice versa
(Coleman et al., 2020). It is likely that given pleiotropy (Gale
et al., 2016) and correlated genetic risks (Palmer, n.d.) that may
predispose one to psychopathology, cardiovascular and metabolic
health problems, and unhealthy lifestyle factors, there are non-
causal mechanisms affecting associations between mental and
cardiometabolic health across multiple physical and mental health
phenotypes.

Studying mental health as a contributor to cardiometabolic
conditions could enable a better understanding of biological
and psychosocial mechanisms that impact cardiovascular and
metabolic health. Most existing longitudinal studies have exam-
ined associations between depression symptoms and physical ill-
ness over comparatively short follow-up periods (e.g., a 2012
meta-analysis of literature on depression and hypertension
found a mean follow-up period of 9.6 years) (Meng et al., 2012;
Semenkovich et al., 2015). Additionally, studying the longitudinal
relationships between depression and cardiometabolic health
enables the identification of targetable risk factors for chronic
physical conditions that account for a large proportion of the
global disease burden.

In the current analyses, we examined longitudinal associations
between total and non-somatic depression symptoms at midlife
and the subsequent onset of cardiometabolic and related health
outcomes (atrial fibrillation, diabetes, erectile dysfunction, hyper-
cholesterolemia, hypertension, myocardial infarction, sleep apnea,
and stroke) in later life, excluding individuals with disease onset
before baseline, to establish whether depression may increase
the risk of developing cardiometabolic problems. These analyses
are novel given the extended period (approximately 27 years)
between baseline and follow-up, as well as the inclusion of poly-
genic risk scores (PRSs) for each of the eight cardiometabolic con-
ditions as covariates to further isolate the effect of depression on
long-term health outcomes. Including PRSs as covariates enabled
these analyses to partially control for the influence of polygenic
risk on the development of each health condition, enabling us
to clarify how the experience of depression symptoms may be
associated with these health outcomes over and above the influ-
ence of common genetic variation. Clarifying the physiological
risk that may be conferred by depression symptoms provides
insight into the long-term course of health and bolsters the
rationale for screening and interventions to address depression
earlier in the life course.

Methods

Description of the sample

This study includes data from the longitudinal Vietnam Era Twin
Study of Aging (VETSA). VETSA is a longitudinal study of cog-
nitive and brain aging in men, comprising a subset of twins from
the Vietnam Era Twin Registry (VETR) (Kremen et al., 2006,
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2013). All twin pairs in the VETR served in the US military some-
time between 1965 and 1975, although the majority of VETSA
participants did not serve in combat or in Vietnam (Tsuang,
Bar, Harley, & Lyons, 2001). VETSA participants are comparable
to the US male population with respect to demographic and
health characteristics (Kremen, Franz, & Lyons, 2013). All
VETSA participants were randomly selected from the Harvard
Twin Study of Substance Abuse (HTS/’baseline’) (Tsuang et al.,
1996, 2001). Importantly, the HTS did not select on the basis of
any diagnostic or other characteristic. The only inclusion criteria
for VETSA participants were being between 51 and 59 at the time
of initial recruitment and both twins in a pair agreeing to partici-
pate at baseline, although individuals were allowed to participate
without their co-twin in subsequent waves of the study. For the
present study, the sample was restricted to the 787 individual par-
ticipants with genetically determined white, non-Hispanic
European ancestry who participated both during the HTS and
the most recent (third) wave of VETSA and who were healthy
enough to participate in data collection (see Fig. 1). The sample
was limited to subjects with genetically determined European
ancestry to enable the inclusion of PRSs as covariates; sample
sizes of GWAS studies of non-European cohorts are unfortunately
limited for most traits, and PRSs are generally poorer predictors
of risk when calculated from a GWAS of one ancestral group
and applied to another (Martin et al., 2019).

The mean age of participants during the HTS (‘baseline’) was
41.42 (S.D. = 2.34) years, and the mean age at participation in the
third wave of VETSA (‘follow-up’) was 67.59 (S.D. = 2.41) years.
Table 1 shows the socio-demographic and clinical characteristics
of the sample.

Measures of mental and physical health

At baseline, participants completed the National Institute of
Mental Health Diagnostic Interview Schedule, Version III,
Revised (DIS-III-R), a structured psychiatric interview for use in
epidemiologic research (Robins, Helzer, Goldring, & Cottler,
1989). The DIS-III-R assesses lifetime psychopathology symptoms
using criteria from the DSM-III-R (American Psychiatric
Association, 1987). The DIS-III-R assesses nine depression symp-
toms: depressed mood, anhedonia, appetite or weight changes,
sleep disturbance, psychomotor disturbance, fatigue, feelings of
guilt or worthlessness, difficulty concentrating or making decisions,
and thoughts of death, suicidal ideation, or suicide attempt (Robins
et al., 1989). We used only DIS-III-R symptom counts, not diagno-
ses, in these analyses. In sensitivity analyses, we excluded symp-
toms assessing appetite, weight, and sleep disturbance.

At follow-up, participants reported whether a doctor had ever
told them that they had any of 65 specific mental or physical
health problems. For these analyses, eight cardiovascular and
metabolic disorders – atrial fibrillation, diabetes, erectile dysfunc-
tion, hypercholesterolemia, hypertension, myocardial infarction,
sleep apnea, and stroke – were selected based on their prevalence
in the sample as well as on putative relationships with depression
based on existing literature (BaHammam et al., 2016; Carney &
Freedland, 2017; Harris et al., 2009; Kan et al., 2016; Liu et al.,
2018; Meng et al., 2012; Pan et al., 2011; Semenkovich et al.,
2015). Other cardiometabolic conditions (such as angina and
heart murmur) were assessed in VETSA, but were not included
in these analyses due to their low incidence in the sample,
which could result in the effects of depression on these conditions
being undetected due to low power, and/or the unavailability of

PRSs for these conditions. Self-reported year of diagnosis was
used to determine the onset of each health problem. Cases with
the onset of a condition prior to participation in the baseline
assessment were excluded from the analyses of that condition.
Table 2 shows the incidence of physical health outcomes between
baseline and follow-up.

Covariates

Covariates in all analyses included age at follow-up, alcohol con-
sumption, smoking, body mass index (BMI), C-reactive protein
(CRP), and polygenic risk for specific health outcomes to account
for known risk factors from the literature on depression and phys-
ical health (Capuron et al., 2008; Freitas et al., 2016; Janszky,
Ahlbom, Hallqvist, & Ahnve, 2007; Pan et al., 2011). Smoking
behavior was measured at baseline as the number of cigarettes
participants reported smoking daily during the period of their
life when they smoked most, and alcohol consumption was mea-
sured at baseline as the average number of drinks per day partici-
pants reported consuming over the past year. Analyses used
baseline substance use covariates to examine how substance use
at baseline was related to the subsequent onset of cardiovascular
conditions; BMI and CRP were not available at baseline. BMI
was computed using participants’ measured height and weight
at follow-up, and was consistent with nationally representative
data for men over age 60 (Fryar, Kruszon-Moran, Gu, &
Ogden, 2018). High-sensitivity CRP (mg/L) was measured from
fasting blood samples at follow-up and used as a marker of
inflammation.

Genotyping methods and single nucleotide polymorphism
imputation

Each set of health outcome analyses controlled for polygenic risk
for the cardiometabolic outcome under study. These scores were
included in order to control for underlying biological risk for
physical health conditions and partly isolate the potential effects
of depression symptoms on physical health outcomes. PRSs
were calculated using summary statistics from genome-wide asso-
ciation studies (GWAS) for: atrial fibrillation (Cardiovascular
Disease Knowledge Portal, n.d.; Roselli et al., 2018); type 2 diabetes
(Morris et al., 2012); erectile dysfunction (Bovijn et al., 2019);
total cholesterol (Willer et al., 2013); systolic blood pressure
(Evangelou et al., 2018); CAD (a phenotype including myocardial
infarction; PRSs computed from this GWAS were used in myocar-
dial infarction analyses) (Nelson et al., 2017); sleep apnea (UK
Biobank, n.d.); and stroke (Malik et al., 2018). Individual single
nucleotide polymorphism (SNP) effect estimates and p values
were extracted from summary statistics. PRSs were computed by
PLINK v1.9 using nine different p value thresholds: p <
0.00000001, 0.00001, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50.
The PRS used in each of the health condition analyses was chosen
based on how highly it correlated with the condition (see online
Supplementary eTable S1). Analyses additionally controlled for
the first three principal components calculated from genome-wide
genotype data of the European-descent subsample in order to
account for any cryptic population substructure.

A detailed description of VETSA genotyping procedures is
available in Logue et al. (2019). Whole-genome genetic variation
was assessed at deCODE Genetics (Reykjavík, Iceland) using
Illumina HumanOmniExpress-24 v1.0A BeadChips (Illumina,
San Diego, CA, USA). Before PRS calculations, we cleaned and
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conducted quality control of genotype data using PLINK v1.9
(Chang et al., 2015). Single nucleotide polymorphism weights
(SNPweights) and principal components computed using
PLINK v1.9 in conjunction with 1000 Genomes Phase 3 reference
data were used to identify a European ancestry subset of the data
(1000 Genomes Project Consortium, 2015; Chen et al., 2013).
Principal components were computed based on a linkage-
disequilibrium pruned set of 100 000 common (minor allele fre-
quency >0.05) genotyped SNPs. Within the subset of participants
with genetically determined European ancestry, principal compo-
nents were recomputed for use as covariates for population sub-
structure in the analyses. Imputation was performed using
MiniMac (Fuchsberger, Abecasis, & Hinds, 2015; Howie,
Fuchsberger, Stephens, Marchini, & Abecasis, 2012) computed
at the Michigan Imputation Server (https://imputationserver.sph.
umich.edu). The 1000 Genomes Phase 3 EUR data were used as
a haplotype reference panel.

Statistical analyses

Analyses were performed in SPSS Statistics Version 26 (2018).
Generalized estimating equations were used to account for the
non-independence of observations within twin pairs. Separate
multivariable models were run using each of the eight health con-
ditions. Analyses were performed using the logit link function to
obtain log odds ratios. All models assumed an exchangeable cor-
relation structure, and robust variance estimators were used. All
covariates were standardized using z-scores. Analyses were run
on complete cases; for a comparison between participants with
complete and incomplete data, see online Supplementary
eTable S2.

Analyses examined associations between total depression
symptoms at baseline and the subsequent onset of health condi-
tions by follow-up, controlling for age, alcohol consumption
and smoking at baseline, BMI and CRP at follow-up, and PRS

for the health outcome under study. The significance threshold
was p < 0.05 after correcting for multiple comparisons across
eight sets of analyses, using the false discovery rate proposed by
Benjamini and Hochberg (1995; Radua & Albajes-Eizagirre, n.d.).

Sensitivity analyses were conducted using a measure of depres-
sion symptoms that removed somatic items (those assessing
weight, appetite, and sleep disturbances) to determine whether
the results were sensitive to the exclusion of somatic depression
symptoms.

Supplementary analyses were conducted to examine crude
associations between total depression symptoms reported at base-
line and incident health outcomes 27 years later (see online
Supplementary eTable S3). Additional supplementary analyses
were conducted without the inclusion of PRSs as covariates,
which allowed the inclusion of an additional 408 participants
(total N = 1195) for whom genetic data were not available and/
or who were not of genetically-determined white, non-Hispanic
European ancestry (see online Supplementary eTables S4–5 and
Fig. 1).

Fig. 1. Flowchart of study population and sample size.

Table 1. Sample characteristics (N = 787)

Mean (S.D.)

Age at baseline (years) 41.42 (2.34)

Age at follow-up (years) 67.59 (2.41)

# drinks/day at baseline 2.17 (2.06)

# cigarettes/day at baseline 19.11 (19.13)

BMI at follow-up 29.89 (5.47)

CRP (mg/l) at follow-up 3.49 (7.01)

# depression symptoms at baseline 2.00 (2.30)

BMI, body mass index; CRP, C-reactive protein.
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Results

Table 3 displays standardized results from longitudinal analyses
that examined associations between total depression symptoms
reported at baseline and incident health outcomes 27 years
later, controlling for age, alcohol consumption, smoking, BMI,
CRP, and polygenic risk. After correcting for multiple compari-
sons, total depression symptoms at baseline were significantly
longitudinally associated at follow-up with incident diabetes
(OR 1.29, CI 1.07–1.57), erectile dysfunction (OR 1.32, CI 1.10–
1.59), hypercholesterolemia (OR 1.26, CI 1.04–1.53), and sleep
apnea (OR 1.40, CI 1.13–1.74). BMI was significantly associated
with atrial fibrillation (OR 1.38, CI 1.03–1.85), diabetes (OR
1.64, CI 1.36–1.99), hypercholesterolemia (OR 1.30, CI 1.06–
1.61), hypertension (OR 1.77, CI 1.39–2.25), and sleep apnea
(OR 2.23, CI 1.75–2.83). In multivariate models, PRSs for atrial
fibrillation (OR 1.90, CI 1.30–2.78), diabetes (OR 1.55, CI 1.26–
1.91), CAD (OR 1.58, CI 1.21–2.07, in myocardial infarction ana-
lyses), cholesterol (OR 1.75, CI 1.41–2.17), systolic blood pressure
(OR 1.53, CI 1.25–1.86, in hypertension analyses), and stroke (OR
1.52, CI 1.15–2.02) all were significantly associated with their
respective health variable.

Table 4 displays results of sensitivity analyses that used a meas-
ure of depressive symptoms without somatic items (appetite,
weight, and sleep disturbances). After correcting for multiple
comparisons, non-somatic depressive symptoms at baseline were
significantly longitudinally associated with sleep apnea (OR
1.32, CI 1.09–1.60) at follow-up. Non-somatic symptoms were
not significantly associated with incident diabetes, erectile dys-
function, or hypercholesterolemia.

Discussion

Total depression symptoms were longitudinally associated, over a
27-year follow-up period, with the incidence of several chronic
cardiometabolic health conditions, after controlling for available
physiological and behavioral risk factors such as alcohol con-
sumption, smoking, BMI, CRP, and polygenic risk. A lifetime his-
tory of depression symptoms, assessed at midlife, was associated
with significantly increased odds of subsequently developing dia-
betes, erectile dysfunction, hypercholesterolemia, and sleep apnea
in later life. Thus, having depression symptoms earlier in life may
increase risk for the later onset of chronic health conditions above
and beyond the contributions of alcohol consumption history,
smoking history, BMI, inflammation (CRP), and polygenic risk.

The length of follow-up is particularly noteworthy. Lifetime
total depression symptoms were assessed at an average age of
41 and they predicted risk for these chronic health conditions
over two decades later. Our results suggest that the effects of
depression symptoms on cardiometabolic health could be very
long-lasting, and that, consistent with prior research, these asso-
ciations are robust to the inclusion of traditional risk factors for
non-communicable diseases such as smoking and alcohol use
(Rajan et al., 2020). However, it is also possible that causal factors
not assessed in this study could be increasing risk for both depres-
sion and later cardiometabolic health, or that non-causal mechan-
isms explain these relationships. For example, individuals with a
history of depressive symptoms may be more likely to access
health care generally, therefore enhancing the rate of detection
of cardiometabolic conditions compared to individuals without
a history of depressive symptoms.

Our finding that total depression symptoms were significantly
associated with incident diabetes is consistent with previous
research demonstrating that depression increases the risk for
type 2 diabetes; this research also indicates that this relationship
is bidirectional (Semenkovich et al., 2015). We also found that
depression was longitudinally related to erectile dysfunction,
hypercholesterolemia, and sleep apnea; these findings extend pre-
vious work that has identified relationships between depression
and cardiometabolic health cross-sectionally or over a shorter
timeframe (BaHammam et al., 2016; Harris et al., 2009; Liu
et al., 2018; Montazer & Wheaton, 2011).

Sensitivity analyses revealed that, when somatic depression
symptoms (i.e., weight, appetite, and sleep disturbances) were
excluded, the remaining non-somatic symptoms were significantly
associated with incident sleep apnea. The associations between
non-somatic depression symptoms and erectile dysfunction and
hypercholesterolemia were not significant, and the association
between these non-somatic symptoms and diabetes did not survive
correction for multiple comparisons. This is consistent with previ-
ous literature finding that somatic depression symptoms are asso-
ciated with poor cardiometabolic outcomes (de Miranda Azevedo
et al., 2014). Depression-related changes in appetite, weight, and/
or sleep may either lead to or indicate physiological changes that
impact cardiometabolic health over time. A large-scale study of
dimensions of depression symptoms found that somatic symptoms,
measured both before and after cardiovascular disease onset, are
associated with mortality (Freak-Poli et al., 2018). Future research
could investigate whether particular symptom clusters, or even

Table 2. Incidence of cardiometabolic conditions

Frequency of incident casesa Frequency of early-onset cases (N = 787) b

Atrial fibrillation 62 (8.0%) (N = 778) 4 (0.5%)

Diabetes 174 (22.5%) (N = 774) 12 (1.5%)

Erectile dysfunction 176 (22.9%) (N = 770) 5 (0.6%)

Hypercholesterolemia 408 (57.1%) (N = 715) 65 (8.3%)

Hypertension 370 (53.6%) (N = 690) 89 (11.4%)

Myocardial infarction 65 (8.3%) (N = 781) 6 (0.8%)

Sleep apnea 159 (20.5%) (N = 774) 8 (1.0%)

Stroke 43 (5.5%) (N = 785) 0 (0.0%)

aNs vary due to condition-specific exclusion of early-onset cases or missing data.
bCases with onset prior to baseline were excluded from analyses.
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Table 3. Longitudinal associations between depression symptoms at baseline and health conditions at follow-up

Exponentiated odds ratio [95% CI]

Atrial
fibrillation Diabetes

Erectile
dysfunction Hypercholesterolemia Hypertension

Myocardial
infarction Sleep apnea Stroke

Baseline depression symptoms 1.09
[0.77–1.53]
(p = 0.633)

1.29a

[1.07–1.57]
( p = 0.009)

1.32a

[1.10–1.59]
( p = 0.003)

1.26a

[1.04–1.53]
( p = 0.017)

1.22
[1.02–1.47]
( p = 0.033)

1.25
[0.96–1.62]
( p = 0.095)

1.40a

[1.13–1.74]
( p = 0.003)

1.07
[0.71–1.61]
( p = 0.744)

Age at follow-up 1.67a

[1.17–2.39]
( p = 0.005)

1.12
[0.89–1.41]
( p = 0.338)

1.21
[0.96–1.54]
( p = 0.112)

1.07
[0.87–1.30]
( p = 0.542)

1.34a

[1.09–1.64]
( p = 0.005)

1.07
[0.75–1.53]
( p = 0.697)

1.14
[0.89–1.45]
( p = 0.303)

1.29
[0.80–2.10]
( p = 0.298)

Drinks per day at baseline 0.89
[0.58–1.36]
( p = 0.594)

1.08
[0.85–1.37]
( p = 0.535)

1.06
[0.85–1.34]
( p = 0.591)

0.91
[0.73–1.13]
( p = 0.390)

1.21
[0.95–1.55]
( p = 0.123)

0.74
[0.45–1.22]
( p = 0.238)

0.70
[0.51–0.96]
( p = 0.028)

0.97
[0.58–1.61]
( p = 0.899)

Cigarettes per day at baseline 1.03
[0.77–1.38]
( p = 0.822)

0.92
[0.77–1.10]
( p = 0.344)

0.96
[0.79–1.16]
( p = 0.660)

1.23
[1.02–1.48]
( p = 0.031)

1.08
[0.89–1.30]
( p = 0.449)

1.33
[1.04–1.71]
( p = 0.024)

1.10
[0.90–1.35]
( p = 0.370)

1.56
[1.13–2.16]
( p = 0.007)

BMI at follow-up 1.38a

[1.03–1.85]
( p = 0.030)

1.64a

[1.36–1.99]
( p < 0.001)

1.09
[0.91–1.31]
( p = 0.360)

1.30a

[1.06–1.61]
( p = 0.012)

1.77a

[1.39–2.25]
( p < 0.001)

1.03
[0.76–1.39]
( p = 0.851)

2.23a

[1.75–2.83]
( p < 0.001)

1.09
[0.77–1.54]
( p = 0.614)

CRP at follow-up 1.08
[0.87–1.34]
( p = 0.497)

1.09
[0.89–1.34]
( p = 0.413)

0.95
[0.74–1.21]
( p = 0.674)

0.81
[0.68–0.96]
( p = 0.015)

1.27
[1.02–1.57]
( p = 0.030)

1.24
[1.01–1.51]
( p = 0.036)

1.18
[0.97–1.44]
( p = 0.093)

1.28
[1.02–1.60]
( p = 0.030)

PRS for health conditionb 1.90a

[1.30–2.78]
( p = 0.001)

1.55a

[1.26–1.91]
( p < 0.001)

1.09
[0.90–1.33]
( p = 0.365)

1.75a

[1.41–2.17]
( p < 0.001)

1.53a

[1.25–1.86]
( p < 0.001)

1.63a

[1.17–2.29]
( p = 0.004)

0.87
[0.70–1.08]
( p = 0.212)

1.52a

[1.15–2.02]
( p = 0.004)

CI, confidence interval; BMI, body mass index; CRP, C-reactive protein; PRS, polygenic risk score.
aAssociation remained significant after correcting for multiple comparisons.
bPolygenic risk scores (PRSs) for health conditions: atrial fibrillation, diabetes, erectile dysfunction, coronary artery disease (for myocardial infarction), cholesterol, systolic blood pressure (for hypertension), sleep apnea, and stroke. All analyses also
controlled for first three principal components (not shown).
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Table 4. Sensitivity analyses: Longitudinal associations between depression symptoms (excluding somatic items) at baseline and health conditions at follow-up

Exponentiated odds ratio [95% CI]

Atrial fibrillation Diabetes Erectile dysfunction Hypercholesterolemia Hypertension
Myocardial
infarction Sleep apnea Stroke

Baseline non-somatic depression
symptoms

1.20
[0.89–1.62]
( p = 0.226)

1.24
[1.03–1.49]
( p = 0.023)

1.18
[0.99–1.41]
( p = 0.073)

1.16
[0.96–1.40]
( p = 0.115)

1.10
[0.93–1.30]
( p = 0.268)

1.19
[0.92–1.53]
( p = 0.191)

1.32a

[1.09–1.60]
( p = 0.005)

1.31
[1.00–1.72]
( p = 0.050)

Age at follow-up 1.70a

[1.18–2.44]
( p = 0.004)

1.11
[0.88–1.39]
( p = 0.388)

1.19
[0.94–1.50]
( p =0 .151)

1.05
[0.86–1.29]
( p = 0.608)

1.32a

[1.08–1.61]
( p = 0.007)

1.06
[0.74–1.52]
( p = 0.747)

1.12
[0.88–1.43]
( p = 0.369)

1.33
[0.81–2.18]
( p = 0.255)

Drinks per day at baseline 0.90
[0.59–1.37]
( p = 0.615)

1.08
[0.85–1.37]
( p = 0.523)

1.07
[0.85–1.35]
( p = 0.576)

0.92
[0.74–1.14]
( p = 0.442)

1.22
[0.96–1.55]
( p = 0.108)

0.74
[0.45–1.23]
( p = 0.242)

0.70
[0.51–0.96]
( p = 0.027)

0.99
[0.59–1.65]
( p = 0.953)

Cigarettes per day at baseline 1.03
[0.77–1.37]
( p = 0.845)

0.93
[0.77–1.12]
( p = 0.432)

0.98
[0.81–1.18]
( p = 0.815)

1.25
[1.04–1.50]
( p = 0.020)

1.09
[0.91–1.32]
( p = 0.349)

1.36
[1.05–1.75]
( p = 0.019)

1.12
[0.91–1.38]
( p = 0.273)

1.54
[1.12–2.11]
( p = 0.008)

BMI at follow-up 1.40a

[1.04–1.87]
( p = 0.026)

1.64a

[1.36, 1.98]
( p < 0.001)

1.09
[0.91–1.30]
( p = 0.355)

1.30a

[1.05–1.60]
( p = 0.014)

1.76a

[1.38, 2.23]
( p < 0.001)

1.03a

[0.77–1.39]
( p = 0.828)

2.21a

[1.75–2.80]
( p < 0.001)

1.11
[0.79–1.57]
( p = 0.542)

CRP at follow-up 1.07
[0.85–1.34]
( p = 0.565)

1.08
[0.88–1.34]
( p = 0.451)

0.95
[0.75–1.19]
( p = 0.648)

0.81
[0.68–0.96]
( p = 0.013)

1.27
[1.02–1.57]
( p = 0.030)

1.23
[1.00–1.50]
( p = 0.046)

1.17
[0.96–1.43]
( p = 0.112)

1.28
[1.02–1.60]
( p = 0.032)

PRS for health conditionb 1.92a

[1.31–2.80]
( p = 0.001)

1.55a

[1.26–1.90]
( p < 0.001)

1.10
[0.91–1.33]
( p = 0.339)

1.76a

[1.42–2.17]
( p < 0.001)

1.50a

[1.23–1.84]
( p < 0.001)

1.65a

[1.18–2.30]
( p = 0.004)

0.89
[0.71–1.10]
( p = 0.279)

1.55a

[1.16–2.08]
( p = 0.003)

CI, confidence interval; BMI, body mass index; CRP, C-reactive protein; PRS, polygenic risk score.
aAssociation remained significant after correcting for multiple comparisons.
bPolygenic risk scores (PRSs) for health conditions: atrial fibrillation, diabetes, erectile dysfunction, coronary artery disease (for myocardial infarction), cholesterol, systolic blood pressure (for hypertension), sleep apnea, and stroke. All analyses also
controlled for first three principal components (not shown).
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individual symptoms, are uniquely associated with risk for specific
cardiometabolic outcomes, particularly in populations with higher
overall depression symptom burden than our study.

Of the cardiometabolic outcomes with which total depression
symptoms were not significantly associated in full models, myo-
cardial infarction and stroke are likely to be the most reliably
reported by participants, given that these health outcomes are dis-
crete events which often require emergency medical care, and
thus potentially less likely to be underreported than other health
outcomes. One possible explanation for the lack of observed asso-
ciation with myocardial infarction is the relatively low base rate of
this outcome in our sample (8.3%). These analyses may have been
underpowered, especially as the odds ratio for myocardial infarc-
tion (1.25) was of a similar magnitude to other health outcomes
that were significantly associated with depression symptoms.
Future studies should examine whether myocardial infarction is
associated with a history of depressive symptoms in other sam-
ples, including samples with a higher base rate of this outcome.

PRSs were significantly associated with their respective cardio-
metabolic conditions in most models. Although PRSs represent
only genetic risk due to common variation, these findings demon-
strate the importance of more in-depth screening for both depres-
sion and genetic risk factors for cardiometabolic health. These
results could also reflect the influence of genes relevant to depres-
sion on cardiometabolic outcomes.

Several putative mechanisms responsible for the longitudinal
relationships between psychopathology and cardiometabolic health
have been suggested. These mechanisms fall into two major cat-
egories: behavioral and biological processes. Hypothesized behav-
ioral mechanisms linking depression to cardiovascular and
metabolic health problems include lifestyle and compliance factors
associated with depression, such as smoking, poor diet, lack of exer-
cise, weight gain, and reduced medication compliance (Chaddha,
Robinson, Kline-Rogers, Alexandris-Souphis, & Rubenfire, 2016;
Colotto, Rubini, Savoriti, D’Adduogo, & Mercuri, 2010;
Semenkovich et al., 2015; Serrano, Tiemi Setani, Sakamoto, Maria
Andrei, & Fraguas, 2011). In our analyses, BMI at age 68 was asso-
ciated with cardiometabolic conditions when controlling for other
covariates. Of note, BMI could be considered both a biological and
a behavioral process, as it is a complex phenotype associated with a
multitude of biological factors (e.g., genetics) as well as non-
biological factors (e.g., walkability of one’s environment) (Locke
et al., 2015; Tarlov et al., 2020). BMI and major psychiatric disor-
ders, including major depression, have extensive polygenic overlap
(Bahrami et al., 2020), and higher BMI is likely causally associated
with the incidence of depression (Tyrrell et al., 2019). Although our
study did not examine BMI longitudinally, it is possible that BMI
influenced both the development of depression symptoms and of
cardiometabolic health outcomes in our sample. It is noteworthy
that BMI was significantly associated with five of the eight cardio-
metabolic conditions examined.

Other hypothesized biological mechanisms linking depression
to cardiovascular and metabolic health problems include abnormal
cardiac function (e.g., heart rate variability, left ventricular impair-
ment), hyperinflammation, serotonin transport gene polymorph-
isms, hypothalamic–pituitary–adrenal axis dysregulation,
endothelial dysfunction, endocrine changes, and greater platelet
activation and aggregation (Chaddha et al., 2016; Monami &
Marchionni, 2007; Pozuelo et al., 2009; Schoevers et al., 2004;
Semenkovich et al., 2015; Serrano et al., 2011). In our analyses,
CRP was not significantly associated with cardiometabolic condi-
tions when controlling for other covariates. Notably, several

antidepressant medications affect these physiological processes,
which suggests the possibility that antidepressant treatment could
reduce the heightened cardiovascular and metabolic risk burden
conferred by depression (Monami & Marchionni, 2007). Future
work could examine these hypothesized mechanisms directly
through mediation analyses. Another possible non-causal mechan-
ism could be indicated by correlated genetic risk for both depres-
sion and cardiometabolic health problems; genetic correlations
between other complex traits and health outcomes have been
found in GWAS data (Bulik-Sullivan et al., 2015).

This study has several limitations that should be considered.
The sample includes only men, and we limited our main analyses
to participants of genetically determined European ancestry to
permit the inclusion of PRSs as covariates. These factors limit
the generalizability of these findings; however, supplementary
analyses in the full sample (N = 1195; see online Supplementary
eTables S4–5) follow the same general pattern of results as the
main analyses. This may be due to the relatively low proportion
of variance that is generally explained by PRSs, which index com-
mon genetic variation and may not reflect all genetic influences
on the risk of outcomes. Also, cardiometabolic health was
assessed using self-report binary (yes/no) measures of doctor
diagnosis, which do not account for disease severity; this means
that the identification of cases depended on access to healthcare.
Although more objective measures exist for some conditions
examined (e.g., blood pressure or use of antihypertensive medica-
tions), objective measures were not available for all health condi-
tions, and reliance on them could also result in missed cases. As
several of the conditions we assessed are often undiagnosed –
such as sleep apnea (Finkel et al., 2009) – the true prevalence
of these conditions in our sample may well be underestimated.
This may mean that the estimates presented in these analyses
are conservative: if the true prevalence of these conditions is
higher, then the strength or magnitude of their associations
with a history of depressive symptoms may be masked or biased
toward the null. In total, 103 participants died before the third
wave of VETSA; their exclusion from these analyses may indicate
that our sample is biased toward healthier participants. This
potential selection bias may have resulted in more conservative
estimates of the associations between depression and cardiometa-
bolic outcomes. Future work should include medical record infor-
mation and other objective measures of disease burden when
possible. Additionally, the initial requirement in the first wave
of VETSA that both twins must participate in the study may
have introduced volunteer bias (Neale & Eaves, 1993). Finally,
the odds ratio values in our findings should not be compared dir-
ectly to each other because the base rates for the health conditions
vary.

Although this study was observational and the associations
between depression and cardiometabolic health conditions cannot
be interpreted causally, the longitudinal design as well as the
exclusion of cases of cardiometabolic health problems that were
diagnosed before baseline strengthen the conclusions that can
be drawn about how total depression symptoms in midlife impact
the subsequent development of health problems in later life.
These stable, longitudinal patterns of association could also be
explained by non-causal correlated genetic risk factors not tested
here. Our next step is to fit biometrical genetic twin models to the
data to model both cross-temporal causality and correlated gen-
etic risk factors, which may provide alternative, mechanistic
explanations. Whether causal or not, depression symptoms were
still predictive of cardiometabolic health problems over two
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decades later. Future research should strive to further elucidate
causal relationships and paths between depression and cardiome-
tabolic health over time, and to identify any common causes they
may share. Finally, the results suggest that clinicians treating
depression should pay careful attention to cardiometabolic risk
factors in addition to depression symptoms themselves.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172000505X.

Data. Data on CAD/myocardial infarction (for use in constructing PRSs)
have been contributed by CARDIoGRAMplusC4D investigators and have
been downloaded from www.CARDIOGRAMPLUSC4D.ORG. This research
has been conducted using data from UK Biobank, a major biomedical
database.
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