Research Paper

Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing

Laura C.D. Pomattoa,1,2, Patrick Y. Suna,1,3, Kelsi Yu³, Sandhyarani Gullapallia, Conscience P. Bwizaa, Christina Sisliyana, Sarah Wong, Hongqiao Zhang³, Henry Jay Formana, Peter L. Oliverb,c, Kay E. Daviesb, Kelvin J.A. Daviesa,d,e,∗

a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
b Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
c MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
d Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA
e Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, University of Southern California, Los Angeles, CA 90089-0191, USA

ARTICLE INFO

Keywords:
Adaptive homeostasis
Hyperoxia
Nrf2
20S proteasome
Immunoproteasome
NQO1
Bach1
c-Myc
Lon protease
OXR1

ABSTRACT

The Nrf2 signal transduction pathway plays a major role in adaptive responses to oxidative stress and in maintaining adaptive homeostasis, yet Nrf2 signaling undergoes a significant age-dependent decline that is still poorly understood. We used mouse embryonic fibroblasts (MEFs) cultured under hyperoxic conditions of 40% O2, as a model of accelerated ageing. Hyperoxia increased baseline levels of Nrf2 and multiple transcriptional targets (20S Proteasome, Immunoproteasome, Lon protease, NQO1, and HO-1), but resulted in loss of cellular ability to adapt to signaling levels (1.0 μM) of H2O2. In contrast, MEFs cultured at physiologically relevant conditions of 5% O2 exhibited a transient induction of Nrf2 Phase II target genes and stress-protective enzymes (the Lon protease and OXR1) following H2O2 treatment. Importantly, all of these effects have been seen in older cells and organisms. Levels of two major Nrf2 inhibitors, Bach1 and c-Myc, were strongly elevated by hyperoxia and appeared to exert a ceiling on Nrf2 signaling. Bach1 and c-Myc also increase during ageing and may thus be the mechanism by which adaptive homeostasis is compromised with age.

1. Introduction

Cells, tissues, and organisms must continually adapt to ever-changing environmental conditions. One approach that enables successful coping has been described as ‘Adaptive Homeostasis:” “The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.” [1]. In practice, this means increasing the transcription and/or translation of stress-protective genes after a suitable signal has been received which, in turn, leads to a temporary or transient increase in stress-resistance until the signal-response is turned off and the homeostatic range of stress-resistance contracts back to baseline levels. Previous work has demonstrated in yeast [2], mammalian cells [3–11] and model organisms [12–17] that short-term, very low and non-damaging (i.e. signaling) doses of oxidants such as hydrogen peroxide (H2O2) are capable of inducing an array of stress-protective cellular defense pathways, necessary for an organism to cope with a subsequent oxidative insult.

Adaptive Homeostasis is sometimes confused with ‘Hormesis’ but significant differences exist. Simply put, Hormesis proposes that a small amount of subcellular damage results in an overcompensation of repair mechanisms, that increase stress-resistance [18–20]. In contrast, Adaptive Homeostasis is not a damage/repair process at all, but rather results from the specific and selective activation of intracellular signal-transduction pathways in response to extremely low and non-damaging levels of signaling agents such as H2O2 [1,21]. Of course, transient adaptation...
can also occur at much higher levels of 'signaling agents' that are actually toxic, but such adaptation is greatly diminished as a result of the accompanying toxicity [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,21]. Instead of a toxicological concept, Adaptive Homeostasis should be considered as a physiological processes in which the elasticity of the homeostatic range is continually utilized to transiently expand and contract our ability to cope with ever changing internal and external environmental conditions in real time.

A key component of the adaptive homeostatic response is the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is a crucial transcriptional regulator that binds to nuclear DNA Electrophile Response Elements (EpREs) [also called Antioxidant Response Elements (AREs)] and is necessary in the activation of Phase II detoxification and stress-protective enzymes. Nrf2-target enzymes include the 20S proteasome [10], NAD(P)H:quinone oxidoreductase 1 (NQO-1) [22], heme oxygenase-1 [23], glutathione S-transferases [24,25] and the two subunits of gamma-glutamylcysteine ligase: GCLC/GCLM [26]. Because the adaptive response is transient, multiple Nrf2-transcriptional competitors ensure negative regulation, including Bach1 [27], which competes with Nrf2 through binding to the EpRE/ARE and inhibiting its transcriptional activity, and c-Myc which binds to Nrf2 and both inhibits transcription and promotes Nrf2 degradation [28]. Similarly, the less well-known Oxidation Resistance 1 gene (OXR-1) is a cell-protective element shown to be induced in neurons by oxidative stress [29]. Deletion of OXR1 in several human cell lines, leads to increased sensitivity to H2O2 induced stress and decreased mtDNA stability [30].

The adaptive response in proteolytic capacity is largely due to the adaptive capacity of the Proteasome and the mitochondrial Lon protease. The Proteasome is the major protease responsible for maintaining intracellular protein homeostasis (‘proteostasis’). The Proteasome degrades the bulk of oxidatively damaged proteins in the cytoplasm, nucleus, and endoplasmic reticulum [31]. Whereas, the Lon protease degrades oxidized mitochondrial proteins, including aconitase [32,33]. In response to an appropriate adaptive signal, the Lon protease [13] and both the 20S ‘core’ Proteasome and the Immunoproteasome exhibit large increases in synthesis [34]. Importantly, the 20S Proteasome and the Immunoproteasome are the enzymes most effective in selectively targeting oxidized proteins [35]. Though of major significance in normal protein turnover, the ubiquitin-ATP-dependent 26S Proteasome is actually very poor at degrading oxidized proteins [36], and is itself, sensitive to oxidative stress. Following an oxidative signal, the 26S Proteasome undergoes a conformational change, wherein the highly oxidant-sensitive 19S regulatory caps are removed, thus ‘freeing’ the 20S Proteasome [31,37,38]. As a result, Nrf2 is no longer degraded, its concentration rapidly increases and, following phosphorylation, it undergoes nuclear translocation. Once in the nucleus, Nrf2 binds to EpRE/ARE elements in the upstream regulatory regions of a large number of stress-protective genes, including the 20S Proteasome subunits [39]. The adaptive increase in the 20S Proteasome has been shown to contribute to increased fitness and stress-resistance, while its loss is associated with decreased survival [34].

We have proposed that the age-related decline in Adaptive Homeostasis is an underlying factor behind many age-related diseases and ailments [14,40–42]. Inability to transiently modulate various protective enzymes, results in a feedforward mechanism, wherein decreased Proteasome activity results in further accumulation of damaged protein aggregates, which further inhibits Proteasome activity [43]. Cytosolic protein aggregates are also transported into the mitochondria [44] where they are degraded by the Lon protease [45]. However, both the Proteasome and the Lon protease exhibit a loss of function with ageing [46,47], which may further contribute to the exponential accumulation of oxidatively damaged proteins in the last third of life [48].

Although the air we breathe typically contains some 21% oxygen, only cells in the upper airways and the eyes experience high O2 concentrations. For cells in most of our tissues and organs physiological ‘normoxia’ is much closer to 3–5% O2. When mammalian cells are cultured under ambient ‘room air’ conditions they attempt to adapt to the toxic conditions and many develop aberrant phenotypes. For example, culturing cells at ambient atmospheric O2 has been shown to significantly alter immune cells response to stimuli [49], decrease survival and proliferation of neurons [50], and affect structure and function of mitochondria [51]. At 21% O2, A549 cells show increased tolerance to CuO nanoparticles, due to elevated expression of anti-oxidant genes, in comparison with cells cultured at 13% O2 [52]. Post-mitotic cells, chronically exposed to hyperoxic conditions show increased vulnerability to cell death and reduced proteolysis [53].

To further explore the age-related changes in the Nrf2-mediated adaptive homeostatic response, we utilized different oxygen (O2) concentrations as a model for accelerated ageing. Previously, we have reported that culturing mammalian cells at 40% O2 results in an ‘accelerated ageing phenotype’ compared with cells cultured at 21% O2 activity [43,53]. In addition, we have found evidence that growing cells in a 5% O2 environment is even more beneficial than culturing them at 21% O2. In the present study, using Mouse Embryonic Fibroblasts cells (MEFs), an adaptive response was elicited by using a non-damaging signaling dose of H2O2 to assess changes in the amounts of Nrf2, the extent of its cytosol to nuclear translocation, the levels of Nrf2 competitors such as Bach1 and c-Myc, and the levels of expression of Nrf2-target genes. In addition we have examined if a threshold in the Nrf2-mediated adaptive response occurs when cells are exposed to ‘accelerated ageing’ by growth at 40% O2 (hyperoxia) versus 21% (atmospheric) or 5% O2 (normoxia). Our evidence indicates that culturing at normoxic conditions promotes the adaptive response, whereas ‘accelerated ageing’ by chronic exposure to hyperoxic conditions not only eliminates the adaptive response, but also shows evidence of a ‘ceiling effect’ indicative of a maximum threshold. Our results also suggest possible mechanisms by which Bach1 and c-Myc may abrogate adaptive homeostasis in ageing.

2. Results

2.1. H2O2 signaling does not induce adaptive homeostasis in MEFs cultured at 40% O2 that appear to be maximally adapted already

First, we determined the effect of oxygen tension on cell growth. Almost all cell culture studies are conducted at 21% (ambient) oxygen levels, but decreasing the oxygen tension to 5% (physiological) clearly had a very positive effect on cell growth, with an almost 40% increase in cell number after 3 days of growth (Fig. 2A). Growth was clearly attenuated at 40% O2 (hyperoxia), however, compared to either 21% (ambient) or 5% (physiological normoxia) presumably reflecting the increased levels of oxygen-induced stresses (Fig. 2A).

To determine the survival advantage of the adaptive response, cells were challenged with a toxic dose of 3.0 mM hydrogen peroxide (H2O2). In cells cultured under physiologically relevant conditions of 5% O2 a pre-exposure to a 1.0μM signaling dose of H2O2 was shown to be advantageous and increased survival, but had no impact on survival in cells continually cultured under hyperoxic conditions (40% O2) (Fig. 2B, first 4 bars). Cells grown at 21% ambient O2 exhibited a significantly smaller adaptive response that did cells cultured at 5% O2, but still exhibited greater adaptive survival than did cells grown at 40% O2 (not shown).

Studies in yeast [2] and mammalian cells [11,54,55] demonstrate the temporal reversibility of the adaptive response. Here, we explored whether the adaptive response could be reverted in cells continually cultured under hyperoxic conditions (40% O2). To do this, MEF cells cultured for four weeks at 40% O2 were ‘re-adapted’ by transferring them back to the physiologically relevant condition of 5% O2 and allowing them to acclimate for three weeks Importantly, cells that were transferred from 40% O2 back to 5% O2 recovered their capacity for Adaptive Homeostasis if they were pre-exposed to a 1.0 μM signaling
level of H₂O₂ before being given the 3.0 mM challenge dose of H₂O₂ (Fig. 2B, last 2 bars). These results indicate that the fitness advantage of the adaptive response can be restored once cells are moved back to 5% O₂ (Fig. 2B, last 2 bars). These results indicate that the fitness advantage of the adaptive response can be restored once cells are moved back to 5% O₂ (Fig. 2B, last 2 bars). These results indicate that the fitness advantage of the adaptive response can be restored once cells are moved back to 5% O₂ (Fig. 2B, last 2 bars). These results indicate that the fitness advantage of the adaptive response can be restored once cells are moved back to 5% O₂ (Fig. 2B, last 2 bars). These results indicate that the fitness advantage of the adaptive response can be restored once cells are moved back to 5% O₂ (Fig. 2B, last 2 bars).

Fig. 1. Experimental Design. Mouse embryonic fibroblasts (MEF) cells were cultured at 5% (physiological), 21% (atmospheric), or 40% (hyperoxic) oxygen for 2 weeks prior to either being pre-treated with a signaling dose of 1.0 μM hydrogen peroxide (H₂O₂), or used as controls.

2.2. Hyperoxia Increases 20S Proteasome Subunit Levels but abrogates their adaptive responses to H₂O₂

In order to address if chronic hyperoxia triggers a basal increase in stress-protective enzymes, we assessed protein levels of the 20S Proteasome following H₂O₂ pretreatment in cells cultured either at physiological normoxia (5% O₂) or hyperoxia (40% O₂). For MEFs cultured at 5% O₂, protein quantification revealed that all 20S Proteasome catalytic subunits (β1, β2, and β5) were significantly increased by 18 h following exposure to the 1.0 μM H₂O₂ signaling dose, whereas 1 h was too soon to see an adaptive response (Fig. 3A). This adaptive response at physiologically relevant conditions is in line with previous studies showing that the adaptive response is largely the result of de novo synthesis of the Proteasome [2,9,10,31]. However, MEFs cultured at 40% O₂ had significantly higher basal levels of these catalytic proteasomal subunits regardless of whether they experienced a pre-exposure to H₂O₂ (Fig. 3A-D). We suggest that these results reflect the absence of further adaptive responses in MEFs cultured at 40% O₂.

2.3. Hyperoxia Increases immunoproteasome subunit levels but abrogates their adaptive responses to H₂O₂

Assessment of Immunoproteasome subunits also revealed an adaptive response to 1.0 μM H₂O₂ in MEFs cultured at 5% O₂, but not at 40% O₂. In MEFs cultured at 5% O₂, the two subunits, LMP2 and LMP7, respectively were significantly increased 18 h following an adaptive dose of H₂O₂ (Fig. 4A–C), but in MEFs cultured at 40% O₂ the amount of protein was already significantly elevated in control conditions and exhibited no further increase following H₂O₂ signaling (Fig. 4A–C). These results further suggest a physiological limit to the inducibility of stress-protective enzymes.

2.4. Hyperoxia Increases Nrf2, HO1, and NQO1 levels but abrogates their adaptive responses to H₂O₂

To address whether additional Nrf2-regulated stress-protective enzymes show a difference in induction due to culturing conditions, heme Oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone 1) (NQO1) protein levels were measured. Cells cultured at physiologically relevant conditions (5% O₂), showed an adaptive increase in HO-1 and NQO1 (Fig. 5A–C) 18 h after exposure to a 1.0 μM H₂O₂ signal. In contrast, cells continually cultured under hyperoxic conditions, exhibited elevated basal HO-1 levels, but could not be induced further following H₂O₂ signaling (Fig. 5A and B). Similarly, NQO1 levels were induced 18 h after administration of the H₂O₂ adaptive signaling dose in cells cultured at 5% O₂ (Fig. 5A–C). However, chronic hyperoxia (40% O₂) resulted in a higher NQO1 basal levels, compared to the baseline seen in cells cultured at physiologically relevant conditions (5% O₂) and NQO1 was not further induced following H₂O₂ signaling: nor did it exceed the adaptive levels seen in cells cultured at 5% O₂ (Fig. 5A–C).

2.5. Dysregulation of Nrf2 nuclear translocation by growth under chronic hyperoxia

Since Nrf2 is the master transcriptional regulator for many adaptive stress responses, we next explored whether Nrf2 levels were affected by growth under different oxygen conditions. Under physiologically relevant conditions of 5% O₂, cells exhibited an increase in Nrf2 levels 18 h after receiving an H₂O₂ signaling dose (Fig. 5A–C). However, in cells continually cultured under hyperoxic conditions (40% O₂), baseline Nrf2 levels were already elevated and remained unaffected by a signaling dose of H₂O₂ (Fig. 5D and E). This pattern was similar to that seen above for Nrf2 target genes including the Proteasome, Immunoproteasome, HO-1, and NQO1.

In response to adaptive signaling (such as that initiated by non-damaging 1.0 μM H₂O₂), Nrf2 escapes degradation by the ATP/ubiquitin-dependent 26S Proteasome, undergoes phosphorylation, and enters the nucleus. Therefore we also assessed temporal differences in nuclear versus cytosolic Nrf2 levels at both 5% and 40% O₂ culturing conditions, and following H₂O₂ signaling. Under physiologically relevant growth conditions of 5% O₂, baseline Nrf2 levels in both the cytosol (Fig. 6A and B) and the nucleus (Fig. 6A and B) were relatively low. Within just 1 h of adaptive H₂O₂ signaling dose, however, there was a significant accumulation of Nrf2 in the nucleus, enabling its activation of target genes. In contrast, 18 h after H₂O₂ signaling, at which point transcription and translation of Nrf2 target genes was already maximal, Nrf2 nuclear accumulation diminished and cytosolic levels rose (Fig. 6A and B). Cells continually grown under hyperoxic conditions of 40% O₂ showed high baseline levels of both cytosolic and nuclear Nrf2 (Fig. 6A and B) compared to cells cultured under 5% O₂. Significantly, an H₂O₂ signaling dose failed to affect either cytosolic or nuclear Nrf2 levels, both of which remained high, in these hyperoxia-cultured cells at either 1hr or 18hr (Fig. 6A and B).

2.6. Dysregulation of Bach1 and c-Myc Nuclear Translocation by growth under chronic hyperoxia

The adaptive homeostatic response is transient. As such, in response to an oxidative signal, cells must be able to temporarily turn ‘off’ the system (i.e. Nrf2 nuclear translocation), and subsequently reverse or
turn ‘off’ the system (i.e. Nrf2 nuclear suppression) when no longer necessary. Potential transcriptional enzymes that may serve as the ‘off’ switch are Bach1, which competes with Nrf2 binding to EpRE/ARE [27], and/or c-Myc, which interacts with and inhibits Nrf2 directly, and/or promotes Nrf2 degradation [28]. In our experiments under physiologically relevant growth conditions of 5% O2, cells pretreated with an adaptive signaling dose of H2O2, showed little change in cytosolic or nuclear c-Myc levels, until 18 h after the signal at which point c-Myc nuclear accumulation was evident (Fig. 7A and B). Bach1 exhibited increased cytosolic levels at 1 and 18 h post H2O2 signaling (Fig. 7A,C), but only began to show nuclear accumulation 18 h post H2O2 (Fig. 7A,C). Together, these results suggest that the nuclear accumulation of both c-Myc and Bach1 (18 h post H2O2 signal) lagged some 17 h behind Nrf2 nuclear accumulation (1 h post initial H2O2 signal) allowing ample time for Nrf2-activated gene expression and serving as an effective Nrf2 ‘off’ switch.

In contrast to the above results of effective H2O2-Nrf2 signaling for Adaptive Homeostasis in cells grown under normoxia, cells cultured under hyperoxic conditions exhibited high baseline levels of nuclear c-Myc (Fig. 7A and B), with no change following H2O2 signaling (Fig. 7A and B). Moreover, c-Myc levels in hyperoxic cells matched those achieved 18 h post H2O2 signaling, suggesting dysregulation of c-Myc expression.
temporal inhibition. Additionally, Bach1 exhibited heightened basal cytosolic and nuclear levels, which were further increased in the nucleus 18h post H₂O₂ signal (Fig. 7A and B). Thus, cells grown under hyperoxia, which face chronically elevated levels of oxidative stress, showed high baseline levels of Nrf2 transcriptional inhibitors, but were unable to exceed this limit. This may suggest that growth under hyperoxic conditions forces cells to continually combat oxidative insults that result in elevated levels of both Nrf2 and its inhibitors, such that further adaptation is not possible.

2.7. Hyperoxia induces Lon expression but prevents further adaptive homeostasis

The mitochondrial Lon protease is necessary for clearance of oxidized mitochondrial proteins, such as oxidized-aconitase [32]. Prior work has shown it is highly inducible by multiple forms of stress [13,33,56–60] and is necessary for survival [13,61] and development [62]. Here we sought to address if the stress adaptive induction of Lon changed in response to oxygen concentration. Cells cultured at physiologically relevant levels (5% O₂) showed a marked increase in Lon inducibility 18h post H₂O₂ signaling dose (Fig. 8A and B). However, cells cultured under chronic hyperoxia (40% O₂) exhibited high
baseline levels of Lon, that could not be further increased by exposure to \(\text{H}_2\text{O}_2 \) signaling (Fig. 8A and B).

2.8. Oxr1 isoforms are sensitive to Chronic High Oxygen Exposure

We also explored a relatively novel protein, oxidation resistance 1 (Oxr1), that has been implicated as necessary for oxidative stress protection, perhaps especially in neuronal cells. Originally identified in bacteria to protect against oxidative DNA damage [63], it has been shown to protect against neurodegeneration in mammals [64,65], potentially through its partnership with peroxiredoxin 2 [66]. Multiple isoforms of Oxr1 are found in mammalian cells, with the high molecular weight forms (55kD and greater) primarily located in the cytoplasm, whereas the smaller isoforms (less than 55kD) localize to mitochondria. Here, we show that several Oxr1 isoform levels changed in response to either O2 culturing concentrations, or exposure to \(\text{H}_2\text{O}_2 \) signaling, or both. Higher levels of the largest Oxr1 isoform, at 120kD, were seen in cells grown at 5% O2 than in cells cultured at 40% O2, but this 120kD isoform was not responsive to \(\text{H}_2\text{O}_2 \) signaling at either O2 culturing condition (Fig. 9A and B). The 85kD full-length active Oxr1 variant was elevated more than two-fold in response to chronic hyperoxia but \(\text{H}_2\text{O}_2 \) signaling actually caused a decrease in its levels; \(\text{H}_2\text{O}_2 \) had no effect on 85kD Oxr1 levels in cells grown at 5% O2 (Fig. 9A and B). Levels of the 55kD Oxr1 isoform exhibited a basal increase at 40% O2, but were unresponsive to an \(\text{H}_2\text{O}_2 \) signal. The mitochondrial-targeted 40kD Oxr1 isoform was relatively unresponsive to O2 culturing conditions but exhibited a significant increase in levels at 18 h post \(\text{H}_2\text{O}_2 \) signaling only in cells grown at 5% O2 (Fig. 9A and B). Finally, the 24kD mitochondrial-specific Oxr1 isoform was significantly decreased by culture at 40% O2 and \(\text{H}_2\text{O}_2 \) signaling had no effect at either 5% or 40% O2 culturing condition. Our results demonstrate a complex interaction of oxygen and \(\text{H}_2\text{O}_2 \) effects on the levels of cytoplasmic and mitochondrial Oxr1 isoforms that must await further investigation to be fully explained.

3. Discussion

In this study we have utilized a hyperoxic model of accelerated ageing to study the responsiveness of the Nrf2 signal transduction pathway and its ability to mediate adaptive homeostasis. Our results demonstrate that \(\text{H}_2\text{O}_2 \) induces a transient induction of the adaptive stress response in cells grown under physiologically relevant conditions of 5% O2. In contrast, cells grown at ambient (~21%) O2 exhibit a more limited ability to adapt, and cells cultured at a hyperoxic level of 40% O2 fail to exhibit any significant adaptive homeostasis. These findings suggest that chronic exposure to hyperoxic conditions is a means of accelerating the oxidation-related stresses associated with aging and is a useful model that mimics several aspects of cellular ageing, as previously postulated [43,53]. Many of the observations reported in this paper have now been repeated in human bronchiolar epithelial (HBE) cells but, given the large amount of data already reported here, and the fact that the HBE cells are part of a very different study, the results are not reported in detail here.

The homeostatic adaptive response is the transient expansion of expression of stress-protective enzymes and the activation of damage removal and repair machinery necessary for clearance of dysfunctional...
enzymes, lipids and organelles; together, all these adaptive responses
serve to prevent the accumulation of damaged cellular components, and
to increase the chances of survival and vigor in response to toxic
situations [67]. As the leading inducer of multiple phase II detoxification
and metabolic enzymes, short-term Nrf2 transcriptional activation is
responsible for initiating the adaptive homeostatic response to oxidants
such as H$_2$O$_2$. Here, we show Nrf2 and its multiple down-stream targets
can be robustly increased at physiologically relevant conditions in
response to an external stimulus. However, the Nrf2-mediated adaptive
increase is lost with the chronic oxidative stress of hyperoxic growth
conditions. This finding mirrors earlier work showing a basal rise in
Nrf2 levels in chronic diseases (including multiple forms of cancer).
Cells continually cultured under physiologically relevant conditions (5% O₂) have excellent growth rates and can increase their proteolytic capacity and stress-resistance when induced with signaling levels of H₂O₂ that enable cells to flourish and thrive [37,72]. In contrast, cells continually cultured under increasingly high oxygen concentrations (from 21% up to 40%), become vulnerable to damage accumulation, a finding matching earlier work [73–75]. Thus, differences in O₂ cul-
turing conditions force cells to chronically elevate stress protective systems in order to protect against cellular damage accumulation. If an additional stress is applied, however (i.e. an oxidative insult with H₂O₂), cells cultured at high O₂ levels are unable to further increase stress-protective systems, resulting in lowered cell growth and poor protein turnover.

Protein clearance is a crucial component of cellular homeostasis, with the Proteasome at the forefront against protein aggregation. The 20S Proteasome and the less-well studied Immunoproteasome (also termed the ‘inducible Proteasome’), both show evidence of increased levels and activity in response to oxidative stress [9,37,76,77]. Basal levels of the 20S Proteasome subunits (β1, β2, β5) and the Immunoproteasome subunits (LMP2 & LMP7), are increased in response to hypoxic conditions (40% O₂). Strikingly, the actual amounts of 20S Proteasome and Immunoproteasome, and the cellular proteolytic capacity, seen under hyperoxia are equal to the maximal levels achieved in cells treated with signaling levels of H₂O₂ after being cultured under physiological conditions of 5% O₂. These findings are similar to studies exploring changes in Proteasome content and activity in response to chronic oxidative stress [78], and with age [12,15,17,79–81]. Because loss of proteostasis only becomes evident in the final third of life [82], these findings may provide important clues to the mechanism(s) of age-dependent loss of adaptive homeostasis. In this regard it is interesting that oxidized proteins are rapidly cleared in early passage fibroblasts, but in high passage number cells there is a marked accumulation of oxidatively modified (often aggregated and cross-linked) proteins and an inability degrade damaged proteins following an oxidative stress such as H₂O₂ [7], a finding that holds true in higher organisms [15,17,72,79,83,84]. Overall prior work, and now evidence from the present study, further suggests there is a potential ‘threshold’ in the ability of cells to cope with chronic oxidation-related stresses such that any additional perturbation may be the final cellular ‘straw’ that may topple the homeostatic balance.

Further evidence of the negative impact of chronic oxidation -related stresses on adaptive homeostasis comes from other Nrf2-inducible enzymes we studied, including heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and the mitochondrial Lon protease. In all cases, basal levels rise with hyperoxia, yet the adaptive responses seen in cells grown under physiologically relevant concentrations of 5% O₂ are lost with chronic hyperoxia. Importantly, the levels of these enzymes seen under hyperoxic conditions are equal to those seen in H₂O₂ adapted cells cultured at 5% O₂ providing further evidence for a cellular ‘ceiling’ effect. Thus, it appears that chronic elevation of Nrf2 and the Nrf2-mediated response has an upper limit, which once achieved, cannot be further increased. A similar finding was previously observed in the present study, further suggesting there is a potential ‘threshold’ in the ability of cells to cope with chronic oxidation-related stresses such that any additional perturbation may be the final cellular ‘straw’ that may topple the homeostatic balance.

Fig. 6. Nrf2 Nuclear Translocation is Dysregulated by Chronic Hyperoxia. MEF cells were cultured either at 5% or 40% oxygen prior to pretreatment. Cells were either not pretreated with H₂O₂ or pre-
treated with a non-damaging, signaling amount (1.0 μM H₂O₂ in a final volume of 2.0 ml in 6 well plates) for 1 h and then al-
lowed to recover for either 1 h or 18 h post treatment. Both cytosolic and nuclear cell fractions were isolated. All treatments were done in replicates of 6 (n = 6). (A) Western blot of Nrf2 levels in cytosolic versus nu-
clear cell fractions at 1-h and 18-h after initial H₂O₂ pretreatment and normalized either to GAPDH (cytosolic fraction) or LAMIN (nuclear fraction) loading controls. (B) Quantification of Nrf2 levels within cy-
tosolic and nuclear fractions normalized to loading controls. MEF cells cultured at 5%, showed an increasing accumulation of Nrf2, within the cytosolic fraction, at 1-h and 18-
h post-pretreatment. In the nuclear fraction, Nrf2 accumulated at 1 h and then decreased back to baseline levels by 18 h after pre-
treatment. In contrast, MEF cells cultured at 40% oxygen, showed no change in Nrf2 accumulation following H₂O₂ pretreatment. All data are expressed as means ± standard errors and statistically significant differences were indicated by * (p < 0.05), ** (p < 0.01), *** (p < 0.001).
reported using human primary endothelial cells that exhibited marked Nrf2-inducibility when cultured under physiological conditions, but that lost inducibility when cultured under ambient air (21% O₂) [85]. Together, these findings highlight the vulnerable state of cells, tissues, and organisms subjected to chronic oxidative stress, wherein any additional insult can overwhelm defense systems. This concept agrees well with prior studies suggesting that during cellular senescence [6,7,57,86,87] and in both invertebrate [12,13,15–17] and vertebrate ageing [14,88,89] (all of which are highly oxidant sensitive states) further perturbations to the system can trigger morbidity and accelerated mortality.

The cellular ‘ceiling’ observed for Nrf2 effects impacts the regulation of the Proteasome and other Nrf2-regulated enzymes. This apparent ceiling effect for Nrf2-regulated enzymes was previously demonstrated in ageing [14,90]. Nrf2 is responsible for inducing the adaptive responses of multiple phase II enzymes [91] and the Proteasome [39,92], and Nrf2 signaling is lost in ageing [14,90]. This suggests that during the ageing process, as in chronic hyperoxia, constraints imposed upon Nrf2 may impact its downstream targets. Under physiological conditions, total Nrf2 amounts follow the canonical pattern of
Because Nrf2 is the physiological ‘on switch’ for the adaptive response, cells require a physiological ‘off switch,’ not only for the energetic cost, but maintenance of the homeostatic range [67]. Prior work has suggested that certain Nrf2 transcriptional inhibitors, specifically Bach1 and c-Myc [85,88,90,91] may act as potential physiological regulators. Both Bach1 [27] and c-Myc [93] interfere with Nrf2-regulated transcription. Here we report novel findings of the temporal transition of c-Myc and Bach1 in response to a non-damaging H2O2 signal. Under physiological conditions (5% O2) Bach1 and c-Myc begin to accumulate only 18 h after the initial H2O2 stimulus, suggesting they may help to dislodge Nrf2 from its EpRE/ARE binding sites and/or prevent further nuclear Nrf2 accumulation. However, under hyperoxic growth conditions, both Bach1 and c-Myc exhibited elevated basal cytosolic and nuclear levels. This is important as it suggests temporal dysregulation, wherein the ‘off switch’ is activated too early [94]. It would appear that Nrf2 tries to compete with Bach1 and c-Myc in order to further elevate de novo synthesis of stress protective enzymes but that ultimately, with age or chronic hyperoxia, it fails. Synthesis of stress protective enzymes may be blocked. Dysregulation of Nrf2 signaling may underlie the age dependent decline in proteostasis that occurs despite a basal rise in stress protective enzymes [14,15,17,21,94,95]. Because activation of proteolytic responses is hindered, transient increases in protein damage may not be dealt with and oxidized proteins that would normally be degraded are allowed to accumulate. Thus, changes the balance of Nrf2, Bach1, and c-Myc levels may account for significant dysregulation of stress responses and adaptive homeostasis during chronic hyperoxia and in ageing.

4. Experimental procedures

4.1. Cell culturing

Mouse embryonic fibroblasts (MEFs) were continuously cultured at 5%, 21%, or 40% O2 (with 5% CO2 for all conditions) for approximately two weeks prior to hydrogen peroxide (H2O2) pretreatment (Fig. 1). For re-adaption experiments, subsets of the 40% O2 cells were transferred back to 5% O2 for two weeks to de-adapt the lines. Dulbecco’s Modified Eagle’s Medium (Cat # 25-500, Genesee, USA) with 10% Fetal Bovine Serum (Cat # 50926-5, Sigma-Aldrich, USA). Antimicrobial, antibiotic-antimycotics were added at a final concentration of 1%, (Cat #: 25-539, Genesee, USA). Media was renewed twice a week.

4.2. Hydrogen peroxide pretreatment

MEFs were seeded at 5 × 10^5 cells per well in 6-well plates at 2 mL per well and allowed to attach overnight before being pretreated with 1.0 μM H2O2 for 1 h. After pretreatment, cells were washed twice with warmed (37 °C) phosphate-buffered saline (PBS), replaced with fresh complete media and allowed to recover for 18 h before harvesting. MEFs were harvested by scraping cells with cold PBS. Cells were pelleted at 5,000 g for 5 min and then resuspended in proteolysis buffer [50 mM Tris, 25 mM KCl, 10 mM NaCl, 1 mM MgCl2, 1 mM dithiothreitol (DTT) (pH 7.5)] and lysed by three rounds of freeze-thaw cycles. Samples were then centrifuged at 10,000 g for 10 min and supernatant was collected and protein concentration quantified using a BCA protein assay kit (Cat #: 23250, Thermo-Fisher Scientific, USA). Cytoplasmic and nuclear fractions were isolated using NE-PER Nuclear and Cytoplasmic Extraction Kit (Cat #: 78833, Thermo-Fisher Scientific, USA).

4.3. Proteolysis assays

Samples were loaded in triplicate at 5 μg cell lysate per well in a 96-well plate with AMC-conjugated substrates. The final volume per well was 100 μL. Samples were run alongside AMC standards to create a standard curve of known AMC concentrations. Fluorescence readings were taken at 10 min intervals using excitation wavelengths of 355 nm.
and emission of 444 nm for a total of 4 h. For measurements of Chymotrypsin-like activity, Caspase-like activity and Trypsin-like activity, the substrates used were 2μM N-succinyl-Leu-Leu-Val-Tyr-AMC, Z-Leu-Leu-Glu-AMC and Boc-Leu-Arg-Arg-AMC, respectively. Significant differences were determined using a One-Way ANOVA followed by a Bonferroni corrected post-hoc test.

4.4. Hydrogen peroxide challenge assay

A pre-exposure of 1.0μM H₂O₂ per 5 × 10⁵ cells was administered for 1 h followed by an 18-h recovery period for 5%, 21%, and 40% O₂ culturing conditions. After the recovery period, a challenge dose of 3.0 mM H₂O₂ per 5 × 10⁵ cells for 1 h was administered. Cells were allowed to recover for 24 h before cell counts were taken. For cell counts, cells were washed twice with PBS, detached with trypsin (Cat # 25-510, Genesee Scientific, USA), and counted using trypan blue stain.
4.5. Cell counts

MEFs cultured at 5%, 21%, and 40% O2 were seeded at 2 × 10^4 in 24-well plates with 10 replicates per oxygen concentration. After 4 days of incubation, cells were washed twice with PBS, detached with trypsin (Cat # 25-510, Genesee, USA), and counted using trypan blue stain (Cat # 15250061, ThermoFisher Scientific, USA) and a hemocytometer.

4.6. Protein quantification

Cell lysate was resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a polyvinylidene difluoride (PVDF) membrane and analyzed by Western blotting. All antibody were purchased from Santa Cruz Biotechnology unless otherwise noted (Supplemental Table 1). The Oxr1 antibody was generously provided by Dr. Peter Oliver. Chemiluminescence (Cat # 32106, Pierce, USA) was visualized on the PXi imaging system (Syngene, USA). Relative band intensity was quantified using ImageJ (National Institute of Health, USA), and normalized to HRP-actin.

4.7. Statistical considerations

One-Way ANOVA was used to test for significant differences between control and treatment groups. Prism 6 was used for completing statistical analyses, with statistical significance reported as follows: *p < 0.05, **p < 0.01, ***p < 0.001. All data are expressed as means ± standard errors.

Summary

Hyperoxia was used as a model of accelerated ageing that diminished the effectiveness of the Nrf2 signal transduction pathway to cope with stress. Increased levels of Bach1 and c-Myc appear to have inhibited Nrf2 and may explain the abrogated adaptive homeostasis that accompanies ageing.

Author contributions

Conflicts of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgements

L.C.D. Pomatto was supported by grant #DGE-1418060 of the USA National Science Foundation and by NIH grant #ES003598 from the National Institute of Environmental Health Sciences of the US National Institutes of Health and is supported by NIH grant #R2GM123963 from the National Institute of General Medical Sciences of the National Institutes of Health. KJA Davies was supported by grant #ES003598 from the National Institute of Environmental Health Sciences of the US National Institutes of Health. KJA Davies and PY Sun were supported by grant AG052374 from the National Institute on Aging of the US National Institutes of Health. HJF Forman and H Zhang were supported by grant #ES023864 from the National Institute of Environmental Health Sciences. K Yu was supported by Rose Hills USC Summer Research Scholarship.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2019.101194.

References

