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Abstract

Background and aims: Smoking is associated with increased risk for brain aging/atrophy

and dementia. Few studies have examined early associations with brain aging. This study

aimed to measure whether adult men with a history of heavier smoking in early mid-life

would have older than predicted brain age 16–28 years later.

Design: Prospective cohort observational study, utilizing smoking pack years data from

average age 40 (early mid-life) predicting predicted brain age difference scores (PBAD)

at average ages 56, 62 (later mid-life) and 68 years (early old age). Early mid-life alcohol

use was also evaluated.

Setting: Population-based United States sample.

Participants/cases: Participants were male twins of predominantly European ancestry

who served in the United States military between 1965 and 1975. Structural magnetic
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resonance imaging (MRI) began at average age 56. Subsequent study waves included

most baseline participants; attrition replacement subjects were added at later waves.

Measurements: Self-reported smoking information was used to calculate pack years

smoked at ages 40, 56, 62, and 68. MRIs were processed with the Brain-Age Regression

Analysis and Computation Utility software (BARACUS) program to create PBAD scores

(chronological age—predicted brain age) acquired at average ages 56 (n = 493; 2002–

08), 62 (n = 408; 2009–14) and 68 (n = 499; 2016–19).

Findings: In structural equation modeling, age 40 pack years predicted more advanced

age 56 PBAD [β = −0.144, P = 0.012, 95% confidence interval (CI) = –0.257, −0.032].

Age 40 pack years did not additionally predict PBAD at later ages. Age 40 alcohol con-

sumption, but not a smoking × alcohol interaction, predicted more advanced PBAD at

age 56 (β = −0.166, P = 0.001, 95% CI = –0.261, –0.070) with additional influences at

age 62 (β = −0.115, P = 0.005, 95% CI = –0.195, –0.036). Age 40 alcohol did not predict

age 68 PBAD. Within-twin-pair analyses suggested some genetic mechanism partially

underlying effects of alcohol, but not smoking, on PBAD.

Conclusions: Heavier smoking and alcohol consumption by age 40 appears to predict

advanced brain aging by age 56 in men.
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INTRODUCTION

According to a World Health Organization 2020 report, more than 1.3

billion people currently smoke cigarettes world-wide, with an esti-

mated 8 million people dying from smoking-related illness each year

[1]. Smoking is a global health risk, associated with higher morbidity

and mortality and increased risk for cognitive impairment and

Alzheimer’s disease (AD) [2,3]. Neuroimaging studies of cigarette

smoking and brain regions of interest (ROIs) consistently show that

higher levels of cigarette smoking are related to thinner cortex and

smaller subcortical volumes [4–9]. A UK Biobank study comprising

approximately 20 000 participants reported smaller total gray matter

volume in long-term smokers [10]. Smokers seeking treatment for

tobacco use have shown smaller cerebellar volumes relative to non-

smokers [11]. Associations between smoking, the entorhinal cortex,

fusiform gyrus and inferior temporal lobe provide additional evidence

of links between smoking behaviors and pathological brain aging [6].

A study of middle-aged adults found that individuals who had ever

smoked had brain signatures more similar to adults with AD than non-

smokers [12]. Currently there are gaps in the literature as to whether

smoking earlier in adulthood is related to later brain aging or how

early in the life-course those associations manifest, and whether the

degree of brain aging continues to advance with continued aging.

Machine learning algorithms applied to magnetic resonance imag-

ing (MRI) data have been developed to create neuroimaging-derived

biomarkers of estimated ‘brain age’ that can be used to predict a per-

son’s age based on the morphometry of their brain relative to chrono-

logical age or the brain of one’s peers [13–16]. In contrast to

approaches focused on specific ROIs, the brain age approach

contextualizes a person’s brain age by their chronological age group,

thereby summarizing a large amount of complex information into a

single metric—the difference between one’s chronological age and

estimated brain age. This allows for inferences about advanced brain

aging and global brain integrity for one’s age. This approach comprises

a powerful tool for identifying associations between premature/

advanced brain aging and potential contributing factors or clinically

relevant consequences. In predominantly cross-sectional studies,

older brain age relative to chronological age is significantly associated

with neurodegenerative diseases such as AD [13,17–19], poorer cog-

nitive performance [15,20–22], health, life-style factors and stress

[13,23–26]. Smoking has been associated with an older predicted

brain age [21,24,25,27]. Brains of individuals who smoked or con-

sumed alcohol frequently appear to exhibit older predicted brain age

compared to those of their peers [24]. Some researchers have also

proposed synergistic effects between smoking and alcohol [8,11].

Importantly, the majority of studies have been cross-sectional or only

included a single time-point for brain imaging indices and had limited

covariates.

In the present study we expand upon the existing literature on

relationships between smoking and brain aging by (a) isolating ciga-

rette smoking history (e.g. smoking pack years) at age 40 and

(b) incorporating longitudinal MRI data. Smoking data were available

at average ages 40, 56, 62 and 68 years. We created estimates of

brain age at ages 56, 62 and 68 based on the MRI data. We predicted

that a history of heavier smoking by early mid-life would be associ-

ated with more advanced brain aging later in life. Secondly, because

some previous studies report co-occurrence of smoking and alcohol

consumption, we conducted sensitivity analyses by additionally
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examining early mid-life alcohol consumption and the interaction

between smoking and alcohol consumption.

METHODS

Participants

We recruited the original Vietnam Era Twin Study of Aging (VETSA)

1 (age 56; 2002–08) participants [28] from the Vietnam Era Twin Reg-

istry (VETR) members who participated in the Harvard Twin Study of

Substance Abuse (HTSSA) [29]. All VETR members were eligible to

participate in the HTSSA and were not selected for any disorder or

substance use. The VETR is a large nationally distributed registry of

male–male twin pairs who served in the United States military at

some point between 1965 and 1975 [30,31]; most (80%) did not

experience combat. VETSA 1 MRI (2004–08) substudy eligibility

requirements included enrolling in the VETSA parent study starting in

2004, being between the ages of 51 and 59 at enrollment, both mem-

bers of a twin pair agreeing to participate and passing the MRI safety

screen (n = 493). There were no significant differences between par-

ticipants who had an MRI and those who did not. VETSA 2 (age 62;

2009–14) and VETSA 3 (age 68; 2016–19) data collections included

the majority of the original participants as well as attrition replace-

ment participants recruited from the same VETR cohort (Figure 1

shows the enrollment in the MRI study over time). The time between

VETSAs 1 and 2 was approximately 5.6 years, and 5.7 years between

VETSAs 2 and 3. Details of the sample ascertainment and data collec-

tions are described elsewhere [28,32,33].

The majority of participants (90.8%) were non-Hispanic white,

with average life-time education of 13.88 years. On average,

participants were age 56 at VETSA 1 [mean = 56.2, standard deviation

(SD) = 2.6, range = 51–60], age 62 at VETSA 2 (mean = 61.8,

SD = 2.6, range = 56–66) and age 68 at VETSA 3 (mean = 67.5,

SD = 2.6, range = 66–73) (see Table 1 for descriptive statistics). Par-

ticipants had comparable health and life-style characteristics to Ameri-

can men in their age range [34]. We excluded participants if they had

a history of seizures, multiple sclerosis, HIV/AIDS or schizophrenia.

Procedures

VETSA in-person assessments involved questionnaires, medical history

interviews, neuropsychological testing and structural MRI of the brain.

Assessments occurred at two sites [University of California, San Diego

and Boston University (with MRIs at Massachusetts General Hospital)],

but MRIs were conducted only in San Diego in VETSA 3. In addition, we

accessed previously collected data from the VETR archive for these par-

ticipants. First, from mean age 20 (SD = 1.31, range = 17–26), we used

a cognitive assessment participants completed at their induction into

the military as a measure of early adult general cognitive ability (GCA).

Secondly, we utilized data from a mailed health survey conducted when

participants were, on average, aged 40 years (SD = 2.7, range = 33–44;

1990) [30,31] which asked about cigarette smoking, alcohol consump-

tion, health problems and demographics. Approximately 16 years

elapsed between the first assessment of smoking at age 40 and the first

MRI at age 56. Measures assessed at each wave of data collection are

depicted in Table 2.

The studies were approved by local institutional review boards at

the participating institutions and participants provided written

informed consent. From this point forward we refer to data collec-

tions by the mean participant age at time of assessment: 20, 40,

56, 62 and 68 years.

Measures

Smoking pack years

At ages 40, 56 and 68, participants responded to the same questions

evaluating start- and end-dates of smoking and number of cigarettes

smoked, if they had smoked more than 100 cigarettes in their life-

time. By age 40, 39% of participants had never smoked and 29% cur-

rently smoked (Table 1). At age 62, participants were asked whether

their smoking habits had changed since the last data collection. If they

smoked and indicated no change, the values for number of cigarettes

smoked and initiation data at age 56 were used; if they indicated a

change they reported their current smoking information.

Pack years is a standard measure of exposure risk which com-

bines duration plus intensity of cigarette smoking. The pack years a

person had smoked at each time-point were calculated by multiply-

ing the number of packs (no. of cigarettes/20) smoked per day by

the number of years the person smoked). Pack years were highly

correlated over time, from r = 0.96 (age 40 with age 68) to r = 0.99

F I GU R E 1 Enrollment in the Vietnam Era Twin Study of Aging
(VETSA) magnetic resonance imaging (MRI) study at different waves
and overlap over time
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(age 62 with age 68). Change in smoking was calculated by

subtracting pack years at age 40 from pack years at age

56, where values of the change score represent gain in pack years.

Due to non-normal distributions both pack years at age 40 and the

pack years change score were subsequently square root-

transformed.

T AB L E 1 Descriptive information on the VETSA participants with magnetic resonance imaging (MRI)

Age 40 Age 56 Age 62 Age 68 c2 F-value P-value

Participants with MRI (n) 493 408 499

Age (years) 40.03 (2.69) 56.20 (2.62) 61.82 (2.62) 67.53 (2.61)

Age change (years)

Age 40 to MRI 16.17 21.79 27.5

Education (years completed) 13.88 (2.09) 13.82 (2.12) 13.74 (2.03) 13.98 (2.07) 1.108 0.344

Ethnicity 2.030 0.512

White non-Hispanic 90.76% 89.86% 88.24% 88.58%

Other 9.24% 10.14% 11.76% 11.42%

Pack years (if smoker) 20.29 (14.94) 27.20 (21.25) 28.78 (22.84) 28.57 (23.51) 13.030 < 0.001

Smoking status 56.828 < 0.001

Current 29.48% 23.12% 18.63% 13.45%

Former 31.79% 40.77% 43.38% 48.39%

Never 38.73% 36.11% 37.99% 38.15%

Alcohol (drinks/14 days) 12.14 (21.73) 10.91 (20.09) 12.39 (22.09) 11.37 (20.95) 0.498 0.684

Alcohol status 2.282 0.892

None 35.30% 35.50% 34.31% 37.95%

Light 50.86% 52.33% 51.72% 50.20%

Heavy 13.84% 12.17% 13.97% 11.85%

Body mass index (BMI) 25.61 (3.19) 28.72 (4.15) 28.89 (4.25) 29.24 (4.25) 108.900 < 0.001

Heath issues (% with condition)

Stroke 0.31% 1.42% 1.72% 4.61% 2038.900 < 0.001

Hypertension 15.99% 55.17% 61.03% 70.14% 400.360 < 0.001

Diabetes 1.39% 9.53% 14.46% 24.05% 147.770 < 0.001

Abbreviations: BMI, body mass index; VETSA, Vietnam Era Twin Study of Aging.

T AB L E 2 Assessment time-line of key variables

Average age at assessment

20 40 56 62 68

Regular variables

General cognitive ability Smoking consumption PBAD PBAD PBAD

Alcohol consumption Age

BMI Ethnicity

Cardiovascular health problems Education

Hypertension

Depression

Respiratory health problems

Change scores

Change in alcohol consumption (56–40)

Change in smoking consumption (56–40)

Age change (62–56)

Age change (68–56)

Abbreviations: BMI, body mass index; PBAD, predicted brain age difference score.
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MRI acquisition and predicted brain age

Structural MRIs of the brain were acquired at age 56 (n = 493) using

1.5-tesla (1.5 T) MRI scanners, and at ages 62 (n = 408) and 68

(n = 499) using 3-tesla (3 T) MRI scanners; 221 participants were

scanned at all three times (Figure 1). Full MRI methods are provided in

Supporting information, S1 [35,36]. We used Brain-Age Regression

Analysis and Computation Utility software (BARACUS) version 0.9.4

[15,26] linear support vector regression models derived from each

individual’s cortical thickness, cortical surface area and subcortical

volume data to create the composite predicted brain age score.

Predicted brain age is subtracted from chronological age creating the

predicted brain age difference score (PBAD) [26]. A negative PBAD

indicates brain age that is estimated to be older than one’s chronolog-
ical age. We then used residualized PBAD scores that were adjusted

for scanner.

Covariates

Covariates included age, race/ethnicity, education, GCA assessed at

age 20 and alcohol consumption, cardiovascular health, respiratory

health, hypertension, body mass index (BMI) and depression at

age 40. Participants completed the age 20 GCA measure: the

Armed Forces qualification test (AFQT). The AFQT is a 100-item

multiple-choice test [37,38] that is highly correlated with other

tests of GCA, such as the Wechsler Adult Intelligence Scale

(r = 0.84); the average intelligence of the VETSA sample is esti-

mated at 105 [39].

Health variables at age 40 were self-reported. Alcohol consump-

tion was based on consumption of wine, beer and/or hard liquor dur-

ing the past 14 days (total of number of days drank × number of

drinks per day). We computed a change in alcohol consumption score

by calculating the difference in drinks per 14 days at age 56 minus

age 40. Due to a non-normal distribution, alcohol consumption at age

40 was square root-transformed, while the alcohol consumption

change score was left in its original units. BMI was calculated as

[weight (lbs)/height (inches)2] × 703; hypertension was self-reported

(yes/no). The cardiovascular disease (CVD) index composite included

heart attack, angina, heart failure, rheumatic heart disease, mitral valve

prolapse, stroke, heart surgery, peripheral vascular disease, atrial fibril-

lation and diabetes. Respiratory health was a composite of history of

asthma, chronic bronchitis, chronic obstructive pulmonary disease and

emphysema. At age 40, approximately 3.9% of participants had any

CVD, 5.4% reported respiratory issues and 7.8% said a doctor had

ever told them they had depression.

We were primarily interested in modeling how smoking history at

age 40 smoking predicts later PBAD, but this could be affected by

change in several measures from age 40. We therefore included sev-

eral change variables as covariates in various statistical models.

Change scores simply subtract a participant’s smoking pack years,

alcohol consumption or age between respective assessments. Change

in smoking pack years age range from 0 to a positive value; alcohol

change could be positive or negative. Age change variables were the

elapsed number of years between assessments. Note that ages

56, 62 and 68 are averages, so the actual number of elapsed years

varies across individuals. We included both education and age

20 GCA in order to adjust for social class/opportunity (e.g. education)

and early adult cognitive ability, both of which may play a role in

smoking initiation and continuity.

Data analyses

Descriptive statistics tested for participant differences at assessment

waves by using analysis of variance (ANOVA) or χ2 tests (Table 1).

Structural equation modeling (SEM) used full information maximum

likelihood (FIML) with robust standard errors (MLR) because twin data

were nested in families in these non-twin analyses.

We used MPlus version 8.4 (Muthen & Muthen, 2019) to con-

struct three SEM models: (1) model 1 is the base—most simple—model

where smoking pack years and change in smoking pack years

predicted PBAD at ages 56, 62, and 68, and included demographic

covariates and age 20 GCA; (2) model 2 added age 40 alcohol con-

sumption and change in alcohol consumption predicting PBAD at ages

56, 62 and 68, plus age 40 health covariates to model 1; and (3) model

3 added the smoking × alcohol consumption interaction to model 2.

Models controlled for a variety of covariates directly on age

56 PBAD and indirectly on ages 62 and 68 PBAD, which include edu-

cation, race/ethnicity, age, age changes (between VETSAs 1 and 2 and

between VETSAs 2 and 3), age 40 health covariates and age 20 GCA.

Key predictors that directly predicted ages 56, 62 and 68 PBAD

included smoking pack years at age 40, alcohol consumption at age

40, age tested at the age 56 assessment and the change in smoking

pack years between age 40 and age 56 assessments, and change in

alcohol consumption between age 40 and age 56 assessments. Addi-

tionally, elapsed age in years between age 56 and age 62 assessments

(AgeChange56–62) and between the ages 56 and 68 assessments

(AgeChange56–68) predicted ages 56 and 68 PBAD, respectively. All

three models adjusted for family, as these are non-twin analyses.

From a data visualization perspective, in Figure 2 we show simpli-

fied models, using blue paths to display correlations and orange paths

to display predictor variables. In this figure, we also divided variables

into how they were modeled. These included covariates (correlated

with other variables and only predict age 56 PBAD), key predictors

(correlated with other variables and predict ages 6, 62, and 68 PBAD)

and age change variables (correlated with other variables, but only

predict ages 62 or 68 PBAD). Age change scores account for amount

of elapsed time between assessments.

We applied a FIML approach where we added all covariates, key

predictors and age change variables as stand-alone variables in the

models, estimating their individual variances. FIML allows for all avail-

able data to be used and produces unbiased parameters assuming data

are missing at random with variables relevant to missingness included

[40]. Models were adjusted for chronological age to control for effects

of regression dilution bias in the PBAD measures [41]. FIML raw

SMOKING AND BRAIN AGING IN MIDLIFE 5



continuous data methods used here are very robust to data missing at

random (MAR). In contrast, if data are missing not at random, then

missing values of a given variable may be related to the values of the

variable itself. For example, subjects who report higher substance use

or show signs of advanced brain aging may experience poorer health

preventing study participation, which results in non-random attrition.

Capitalizing on this being a twin sample, for each of the six variables

of interest (smoking pack years, pack years change, alcohol consump-

tion and PBAD at waves 1–3), we tested for distributional differences

between complete and incomplete twin pair data using tests of mean

and variance homogeneity [42]. To the extent that higher substance

use or advanced brain aging is (a) familial and (b) predicts subject attri-

tion, then data from twin singletons (whose co-twin did not partici-

pate) would reveal different response distributions when compared to

data from complete twin pairs. After false discovery rate (FDR) correc-

tion for multiple testing [43], we found no significant differences (see

Supporting information, Table S4-1). Thus, there does not appear to

be non-random attrition related to our variables of interest.

We report standardized beta estimates. Significance levels are

two-tailed. Age change covariates were considered as control vari-

ables of no interest. The analysis was not pre-registered.

In secondary analyses that further capitalized on this being a twin

sample, we compared within-twin-pair differences in monozygotic

(MZ) and dizygotic (DZ) pairs—a type of co-twin-control analysis—to

assess whether effects of pack years or alcohol on PBAD were due to

environmental influences or due to genetic confounding [44,45].

Detailed methods of this approach are provided in Supporting informa-

tion, S3. Briefly, because MZ twins are genetically identical, only envi-

ronmental factors can make them different [45]. Thus, smaller within-

pair differences in MZs compared with DZs would suggest that some

genetic influences are at work. A lack of within-pair difference between

MZ and DZ pairs would suggest environmental influences. A table of

results for these analyses is provided in Supporting information, S3.

Goodness-of-fit analyses

Multiple measures were used to assess fit [46,47]: Tucker–Lewis

index (TLI) [48]; comparative fit index (CFI) [49]; root-mean square of

approximation (RMSEA); and χ2 statistic [50], where significance sug-

gests lack of fit. Because these models are nested, χ2 tests were

adjusted with a scaling factor [51]. Good RMSEA values are typically

< 0.06; good-fitting CFI and TLI values are typically > 0.95 [52].

Finally, the Akaike information criterion (AIC) is used to compare two

models, where lower values indicate better fit [53]. See Supporting

information, Table S2-3 for goodness-of-fit results.

F I GU R E 2 Measures in model 2: smoking and alcohol predicting PBAD, with covariates. GCA = general cognitive ability; Resp = respiratory;
BMI = body mass index; Diff = difference; PBAD = predicted brain age difference. GCA, education, ethnicity, respiratory health, hypertension,
BMI, cardiovascular health and depression were correlated with each other. Key predictors [smoking, smoking change (age 40–56), alcohol
consumption and alcohol consumption change (age 40–56)] were correlated with each other. Age change at 56–62 and 56–68 were correlated
with each other. Then, covariates, key predictors and age change intercorrelations were modeled. Age 56 PBAD was regressed onto covariates.
All three PBAD scores were regressed onto key predictors. Age 62 PBAD was regressed onto age change (56–62) and age 68 PBAD was
regressed onto age change (56–68). Age 68 PBAD was regressed onto both age 56 PBAD and age 62 PBAD and age 62 PBAD was regressed
onto age 56 PBAD

6 WHITSEL ET AL.



RESULTS

Preliminary analyses

Correlations among key measures are provided in Supporting informa-

tion, Table S2-1. Smoking pack years by age 40 were negatively corre-

lated with PBAD at ages 56, 62 and 68 (r = −0.12, P = 0.005; r =

−0.09, P = 0.06; r = −0.15, P = 0.001, respectively). Alcohol consump-

tion at age 40 was also negatively correlated with PBAD at ages

56, 62 and 68 (r = −0.18, P < 0.001; r = −0.22, P < 0.001, r = −0.22,

P < 0.001, respectively). Thus, participants who smoked or drank more

heavily had older than expected brains for their age, indicating more

advanced brain aging. PBAD scores correlated highly across the

12 years of assessment (rs = 0.75–0.79, Ps < 0.001). At age 40,

heavier smokers consumed higher amounts of alcohol (r = 0.25,

P < 0.001).

SEM

We focus here on the results for the main effects of age 40 smoking

pack years and alcohol consumption and their interaction. Full results

for all the variables in the models with confidence intervals are shown

in Supporting information, Table S2-2.

Model 1 (base model)

Age 40 pack years were associated with age 56 PBAD (β = −0.165,

P = 0.004, 95% CI = 0.276, −0.053), indicating that heavier smoking

was associated with older brain age than expected (see Table 3). Age

40 pack years were not associated with PBAD at age 62 (β = 0.010,

P = 0.839, 95% CI = –0.090, 0.111) or age 68 PBAD (β = −0.041,

P = 0.297, 95% CI = –0.117, 0.036). Age 56 PBAD was significantly

associated with ages 62 and 68 PBAD (β = 0.736, P = 0.000, 95%

CI = 0.673, 0.798; β = 0.363, P = 0.000, 95% CI = 0.244, 0.482,

respectively) and age 62 PBAD was significantly associated with age

68 PBAD (β = 0.503, P = 0.000, 95% CI = 0.385, 0.621). Neither age

20 GCA, education or change in smoking from ages 40 to 56 was

associated with age 56 PBAD. Model 1 demonstrated a good fit com-

pared to a saturated model (see Supporting information, Table S2-3).

Model 2

Model 2 added age 40 alcohol consumption measures and health

covariates to model 1. Age 40 pack years were associated with age 56

PBAD (β = −0.144, P = 0.012, 95% CI = –0.257, −0.032; see Table 3

and Figure 3), but not with ages 62 or 68 PBAD. Age 40 alcohol con-

sumption was associated with both ages 56 PBAD (β = −0.166, P =

0.001, 95% CI = −0.261, −0.070) and age 62 PBAD (β = −0.115, P =

0.005, 95% CI = −0.195, −0.036), but not with age 68 PBAD (β =

−0.028, P = 0.471, 95% CI = –0.105, 0.048). Thus, heavier smoking

and alcohol consumption at age 40 were independently associated

with having an older than predicted brain at age 56 and, for alcohol,

also at age 62. Neither change in smoking nor change in alcohol con-

sumption contributed significantly to model 2. The model demon-

strated a good fit compared to a saturated model (see Supporting

information, Table S2-3). Of the age 40 covariate health measures,

only hypertension was associated with age 56 PBAD (β = −0.125,

SE = 0.036, P < 0.0001), indicating that early hypertension was inde-

pendently associated with having an older than expected brain age at

age 56.

Model 3

Model 3 added the age 40 smoking × alcohol consumption interaction

to model 2. Neither age 40 smoking (β = −0.102, P = 0.122, 95%

CI = –0.231, 0.027), alcohol (β = −0.095, P = 0.23, 95% CI = –0.249,

0.06) or their interaction (β = −0.11, P = 0.222, 95% CI = –0.286,

0.066) were significantly associated with age 56 PBAD; nor were

T AB L E 3 Structural equation model results for key measures from best-fitting model (model 2)

PBAD age 56 PBAD age 62 PBAD age 68

Standardized estimate (SE) P-value Standardized estimate (SE) P-value Standardized estimate (SE) P-value

Smoking pack years age 40 −0.144 (0.06) P = 0.012 0.030 (0.05) P = 0.563 −0.043 (0.04) P = 0.286

Change in smoking 0.130 (0.07) P = 0.059 −0.020 (0.06) P = 0.723 −0.014 (0.05) P = 0.775

Alcohol consumption age 40 −0.166 (0.06) P = 0.001 −0.115 (0.04) P = 0.005 −0.028 (0.04) P = 0.471

Change in alcohol −0.042 (0.05) P = 0.359 −0.009 (0.04) P = 0.806 0.018 (0.03) P = 0.534

PBAD age 56 0.721 (0.03) P < 0.0001 0.361 (0.06) P < 0.0001

PBAD age 62 0.499 (0.06) P < 0.0001

Note: Bold type indicates significant results.

Abbreviations: BMI, body mass index; PBAD, predicted brain age difference; SE, standard error. Model 2 variables include: smoking pack years at age 40,

average drinks of alcohol in past 14 days at age 40, demographics (age, ethnicity, education), age 20 general cognitive ability, age 40 BMI, hypertension,

cardiovascular disease index, respiratory index, depression (yes/no), changes in age (56–62; 56–68), changes in smoking (from 40 to 56), changes in alcohol

consumption (40–56) (full models including confidence intervals are provided in Supporting information, Table S2-2).
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they associated with ages 62 or 68 PBAD (see Supporting informa-

tion, Table S2-2). Although model 3 demonstrated a good fit (χ2(20
) – 21.48, P = 0.3694, RMSEA = 0.010, CFI = 0.998, TLI = 0.995),

comparisons of model 3 with model 2 by constraining paths with the

interaction term in model 3 to zero showed that model 3’s AIC was

higher than the constrained model (37 797.452 versus 37 793.782).

Thus, the more parsimonious model 2—without the interaction—is a

better-fitting model.

Co-twin control analyses

We compared within-twin pair differences in MZ and DZ pairs—a type

of co-twin control analysis—to assess whether effects of pack years

or alcohol on PBAD were due to environmental influences or to

genetic confounding. A lack of MZ–DZ pair differences indicated that

smoking effects on PBAD were due to environmental exposure.

Because MZ twins are genetically identical, only environmental fac-

tors can make them different (see Supporting information, S3 for

detailed methods and Table S3-1 for results). Although underpowered

for a definitive conclusion, the lower MZ than DZ between-pair differ-

ence suggested some genetic confounding of alcohol consumption

effects on PBAD.

DISCUSSION

Our major finding was that smoking history at age 40 was associated

with more advanced predicted brain age 16 years later at age 56 and

that alcohol consumption independently contributed to advanced

predicted brain age at both ages 56 and 62. Individuals with lower

cognitive ability in young adulthood and fewer years of education

were more likely to have higher pack years and higher alcohol con-

sumption, but age 20 GCA and education were not directly associated

with predicted brain age after accounting for their associations with

alcohol consumption and smoking history at age 40. Hypertension

was the only early mid-life health factor that was associated with

PBAD. Consistent with prior cross-sectional results, high blood pres-

sure was associated with worse predicted brain age; however, our

results were across a 16-year period [54]. Studies of much older

adults have reported associations between smoking and alcohol con-

sumption and associations of advanced predicted brain age with mild

cognitive impairment (MCI) and dementia [6,17,18,27,55]. Our finding

that age 40 smoking and alcohol consumption independently

predicted PBAD as early as age 56 suggests that their associations

with brain aging begin earlier than previously identified.

There are a number of distinguishing features of the present

study. First, we had information on history of smoking and alcohol

F I GU R E 3 Significant main effects of age 40 smoking pack years and alcohol consumption on predicted brain age difference (PBAD) for the
best-fitting model (model 2). Model 2 adjusts for all covariates as indicated in Figure 2 except the smoking × alcohol interaction. Shown are
standardized parameter estimates for significant paths (see Supporting information, Table S2-2 for full results, including the confidence intervals).
We constrained paths with the interaction term in model 3 to zero and the model 2 Akaike’s information criterion (AIC) was then compared to
model 3. Model 3’s AIC was higher than the constrained model (37 797.452 versus 37 793.782), indicating that the more parsimonious model
2, without the interaction, is a better-fitting model
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consumption at age 40, 16 years before the brain age measures, and

we had access to a broad array of risk/protective factors. It is a partic-

ular strength of the study that we are able to adjust for age 20 GCA,

as higher GCA is typically associated with having a larger and healthier

brain as well as with less smoking and alcohol consumption [12,22].

Previous findings about education are probably confounded with GCA

and measures of pre-morbid GCA are seldom available in studies of

older adults. With the data back to age 20 and use of SEM, we were

able to adjust for inter-relationships among these measures over a

long period of time. The PBAD measure is also a strength of the study.

In contrast to ROI-based measures, the brain-age approach contextu-

alizes a person’s overall brain morphometry by their age group. This

creates a single metric that summarizes a large amount of complex

information across the brain, thus allowing for inferences about

advanced brain aging and global brain morphometry. Having multiple

measures of PBAD from ages 56 to 68 as well as smoking history

assessed at multiple time-points allowed us to examine the timing of

the effects of smoking on brain aging. We were surprised, however,

that with the exception of age 40 hypertension, age 40 health

problems—including the cardiovascular disease index—were not asso-

ciated with this metric of brain aging. Lane et al.,[56] for instance,

reported that higher Framingham cardiovascular risk scores at ages

36, 53 and 69 were associated with smaller whole brain volume at

age 69. It may be that the low prevalence of diseases at age 40 in our

sample or the reliance upon self-report reduced our ability to find

these associations. However, while the original Framingham index

may pick up on aggregated risk factors prior to disease onset, it may

also obscure the relative contribution of separate risk factors at differ-

ent times, as smoking is one component of the Framingham index.

Smoking and alcohol consumption are presumed to affect brain

health through multiple pathways involving cardiovascular risk and

neurotoxic effects [11,57–60]. In addition, smoking and alcohol con-

sumption in early mid-life could increase risk for dementia through

their effects on brain aging [27]. Smoking and alcohol consumption as

environmental exposure effects on brain aging are intuitive. Interest-

ingly, however, our within-twin-pair analyses also suggested some

genetic effects underlying the association of alcohol consumption and

PBAD. Whether these genetic effects are related to genes that influ-

ence susceptibility to or amount of alcohol consumption or genes that

influence how the brain responds to alcohol remains to be deter-

mined. In any case, the results suggests that a partial mechanism

underlying this effect is genetic differences. Further follow-up will

also be needed to determine the extent to which earlier smoking,

alcohol consumption and PBAD modulate risk for AD or MCI.

Limitations

The study has limited generalizability to women and ethnic minorities.

Ample data on the deleterious effects of smoking and alcohol are sug-

gestive of causality, but without age 40 MRI data definitive causal

inferences cannot be made from our observational study. Although

smoking pack years is an imperfect measure, it provides perspective

on life-time risk and exposure [61]. Thus, smoking pack years at age

40 helps to anchor risk in early mid-life. Also, due to a change in

smoking questions only at age 62, the age 62 report of smoking

required that the participant be able to compare their current smoking

with smoking at age 56. This may introduce some bias due to recall at

age 62 for those who were still smoking. The original BARACUS for-

mulas were developed with data from 3 T scanners, but our age

56 data were from 1.5 T scanners [15]. However, the high intercorre-

lations among the PBAD measures across the three waves support

the validity of the age 56 measure. Finally, genetic influences underlie

both smoking behavior and brain aging. Our results suggest the inter-

esting conclusion that alcohol’s effect on brain aging is partially

genetic, but due to insufficient power that conclusion must be consid-

ered preliminary.

CONCLUSIONS

Meta-analyses suggest that a brain health risk reduction agenda could

be effective in reducing risk for dementia, and smoking and alcohol

consumption are among the top modifiable risk factors for dementia

[3,62,63]. The 2020 Lancet Dementia Prevention, Intervention and

Care Commission reported that �40% of dementia incidence can be

attributed to modifiable risk factors [2], although this remains to be

fully supported by clinical trials [64]. The suggestion of genetic con-

founding for the effects of alcohol indicates that risk assessment and

optimal intervention strategies regarding alcohol might differ for dif-

ferent genetic subgroups. The Lancet Commission life-course model

recommended targeting alcohol consumption during middle age and

smoking in old age. Our findings regarding age 40 smoking and alcohol

consumption extend life-course research in this area and suggest that

harm associated with these modifiable life-style behaviors was evi-

dent as early as mid-life in men.
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