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Heterogeneity in old fibroblasts is linked 
to variability in reprogramming and 
wound healing

      
Salah Mahmoudi1,11, Elena Mancini1,11, Lucy Xu1,2, Alessandra Moore3,4, Fereshteh Jahanbani1, 
Katja Hebestreit1, Rajini Srinivasan4,5, Xiyan Li1, Keerthana Devarajan1, Laurie Prélot1,  
Cheen Euong Ang4,6,7, Yohei Shibuya4,7, Bérénice A. Benayoun1,10, Anne Lynn S. Chang8,  
Marius Wernig4,7, Joanna Wysocka4,5, Michael T. Longaker3,4, Michael P. Snyder1 &  
Anne Brunet1,9*

Age-associated chronic inflammation (inflammageing) is a central hallmark of ageing1, 
but its influence on specific cells remains largely unknown. Fibroblasts are present in 
most tissues and contribute to wound healing2,3. They are also the most widely used cell 
type for reprogramming to induced pluripotent stem (iPS) cells, a process that has 
implications for regenerative medicine and rejuvenation strategies4. Here we show that 
fibroblast cultures from old mice secrete inflammatory cytokines and exhibit increased 
variability in the efficiency of iPS cell reprogramming between mice. Variability 
between individuals is emerging as a feature of old age5–8, but the underlying 
mechanisms remain unknown. To identify drivers of this variability, we performed 
multi-omics profiling of fibroblast cultures from young and old mice that have different 
reprogramming efficiencies. This approach revealed that fibroblast cultures from old 
mice contain ‘activated fibroblasts’ that secrete inflammatory cytokines, and that the 
proportion of activated fibroblasts in a culture correlates with the reprogramming 
efficiency of that culture. Experiments in which conditioned medium was swapped 
between cultures showed that extrinsic factors secreted by activated fibroblasts 
underlie part of the variability between mice in reprogramming efficiency, and we have 
identified inflammatory cytokines, including TNF, as key contributors. Notably, old 
mice also exhibited variability in wound healing rate in vivo. Single-cell RNA-sequencing 
analysis identified distinct subpopulations of fibroblasts with different cytokine 
expression and signalling in the wounds of old mice with slow versus fast healing rates. 
Hence, a shift in fibroblast composition, and the ratio of inflammatory cytokines that 
they secrete, may drive the variability between mice in reprogramming in vitro and 
influence wound healing rate in vivo. This variability may reflect distinct stochastic 
ageing trajectories between individuals, and could help in developing personalized 
strategies to improve iPS cell generation and wound healing in elderly individuals.

Several studies have investigated the effect of ageing and senescence on 
reprogramming9–12, but a systematic evaluation of how ageing influences 
reprogramming is lacking. We examined the influence of old age on the 
inflammatory profile of fibroblasts and their ability to reprogram to iPS 
cells (Fig. 1a). Using cytokine profiling, we compared the systemic milieu 
(plasma) and conditioned medium from primary fibroblast cultures 
from young (3 months) and old (28–29 months) mice (Fig. 1a). Plasma 
from old mice showed increased levels of pro-inflammatory cytokines 

(for example, IL-6 and TNF), anti-inflammatory cytokines (for example, 
IL-4), and chemokines and growth factors (for example, CSF1 (also known 
as MCSF)) compared to plasma from young mice (Fig. 1b, Extended Data 
Fig. 1a, b and Supplementary Table 1a). Conditioned medium from pri-
mary fibroblast cultures from the ears of old mice also showed enhanced 
levels of pro- and anti-inflammatory cytokines (for example, IL-6 and 
TNF, and IL-4, respectively; (Fig. 1b, Extended Data Fig. 1c, d and Sup-
plementary Table 1b). Similarly, inflammatory cytokines increased with 
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age in conditioned medium from lung fibroblasts and human primary 
fibroblasts (Extended Data Fig. 1e, f and Supplementary Table 1c, d). 
Thus, primary cultures of fibroblasts from old mice exhibit a secretory 
inflammatory profile that overlaps in part with that of the systemic 
milieu (Fig. 1b and Extended Data Fig. 1h).

To systematically test the effect of age on iPS cell reprogramming, 
we derived independent fibroblast cultures from a total of 108 young, 
middle-aged and old mice. We induced reprogramming by express-
ing human OCT4 (also known as POU5F1), KLF4, SOX2 and MYC13, and 
assessed reprogramming efficiency using alkaline phosphatase (AP) 
and stage-specific embryonic antigen 1 (SSEA1) staining10 (Fig. 1a and 
Extended Data Fig. 1i–l). We did not observe a significant change in mean 
reprogramming efficiency with age (Fig. 1c and Extended Data Fig. 1l). 
However, there was increased variability between mice in reprogram-
ming efficiency with age, with cultures from some old mice reprogram-
ming better and some worse than cultures from young mice (Fig. 1c and 
Extended Data Fig. 1l). A similar age-dependent increase in variability 
in reprogramming efficiency was observed in chest fibroblast cultures 
(Extended Data Fig. 1m). Reprogramming efficiency appeared to be 
inherent to each culture (derived from an individual mouse), as the 
same culture exhibited largely consistent reprogramming efficiency to 
iPS cells between independent experiments or to induced neurons 
(Extended Data Fig. 1n, o). This increased variability in reprogramming 
efficiency between fibroblast cultures from different old mice could 
reflect distinct stochastic ageing trajectories.

Variability between old individuals has been observed for several bio-
logical features5–8. However, most studies were performed in humans, in 

which genetic and environmental differences also have a role. We used 
the controlled mouse system to understand the stochastic variability 
in reprogramming efficiency between cultures from old mice. Using a 
multi-omics approach, we profiled the transcriptomes, epigenomes 
and metabolomes of young fibroblasts as well as old fibroblasts that 
reprogrammed well (good old) or poorly (bad old) (Fig. 2a and Sup-
plementary Table 2a). Principal component analysis and unsupervised 
hierarchical clustering showed a separation between young and old 
fibroblasts across datasets (Fig. 2b and Extended Data Fig. 2a–h). Prin-
cipal component analysis also revealed some separation between the 
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Fig. 1 | Primary fibroblasts from old mice secrete inflammatory cytokines 
and show increased variability in reprogramming efficiency between mice. 
a, Experimental schematic. Young mice, 3 months old; old mice, 28–29 months 
old. OSKM, OCT4, SOX2, KLF4 and MYC. b, Top, age-dependent changes in 
cytokine levels in plasma and conditioned medium from fibroblasts or iPS cells 
(Extended Data Fig. 1a, g, h). ND, not detected. Bottom, cytokine profiles of 
conditioned medium from primary cultures (passage 3) of ear fibroblasts from 
young (3 months, n = 24) and old (29 months, n = 24) male mice (3 independent 
experiments). Box-and-whisker plots of log2-transformed fold change in mean 
fluorescence intensity (MFI) compared to the median of young fibroblasts. Box 
plots depict median and interquartile range, with whiskers indicating minimum 
and maximum values. **P < 0.01, ***P < 0.001; two-tailed Wilcoxon rank-sum test 
with Benjamini–Hochberg correction. Exact P values can be found in 
Supplementary Table 1b. c, Reprogramming efficiency assessed by alkaline 
phosphatase (AP) staining of cultures of ear fibroblasts obtained from young 
(3 months, n = 44), middle-aged (12 months, n = 11) and old (28–29 months, n = 53) 
mice (7 independent experiments). The log2-transformed fold change over the 
median of young mice is shown. Each dot represents a fibroblast culture from 
one mouse. P values, Fligner–Killeen test to assess differences in variance 
between age groups with Benjamini–Hochberg correction.
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activated state, which is associated with variability in reprogramming 
efficiency. a, Multi-omics characterization of fibroblast cultures. ChIP–seq, 
chromatin immunoprecipitation followed by sequencing; UHPLC–MS, ultra-
high performance liquid chromatography–tandem mass spectrometry. b, 
Principal component (PC) analysis of transcriptomes cultures of ear fibroblasts 
from young (3 months, n = 8) and old (29 months, n = 10) (left) or only old (right) 
mice (3 independent experiments). Old cultures were either good (high 
reprogramming efficiency) or bad (low reprogramming efficiency) 
(Supplementary Table 2a). c, Heat map of significantly differentially expressed 
genes (determined by DESeq2) between young and old fibroblasts described in 
b and enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
Pathways are colour coded according to significance (one-sided Fisher’s exact 
test with Benjamini–Hochberg correction; black, false-discovery rate (FDR)-
adjusted P < 0.05; grey, FDR-adjusted P < 0.15; Supplementary Table 2b, c). ECM, 
extracellular matrix. d, Summary of the multi-omics profiling of young and old 
fibroblast cultures (Extended Data Fig. 2). e, Pathway enrichment analysis of 
KEGG pathways associated with good or bad reprogramming efficiency. 
Overlapping significant (FDR-adjusted P < 0.05) KEGG pathways identified in a 
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expression of the associated gene sets, respectively. Middle heat map, 
expression of specific cytokine genes (Extended Data Fig. 4g). Bottom heat map, 
single cells from good and bad old fibroblast cultures. Gene expression is shown 
as VST-transformed (variance stabilizing transformation, implemented in 
DESeq2) read counts scaled row-wise.
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transcriptomes and metabolomes of good old and bad old cultures 
(Fig. 2b and Extended Data Fig. 2i, j).

Old fibroblasts showed transcriptional enrichment of pathways 
related to secreted factors (for example, cytokine signalling), extracel-
lular matrix, contractility, inflammation and wound healing (Fig. 2c, d,  
Extended Data Fig. 2k, l and Supplementary Table 2b–e). These fea-
tures are characteristic of activated fibroblasts (also known as myofi-
broblasts), which are normally involved in tissue repair2,3,14,15. Indeed, 
the ‘fibroblast activation’ gene set was enriched in the old fibroblast 
transcriptomes (Extended Data Fig. 2m and Supplementary Table 2f). 
Epigenomic and metabolomics changes supported this fibroblast acti-
vation signature (Fig. 2d, Extended Data Fig. 2n–t and Supplementary 

Table 2g–m). The transcription factor EBF2, which shows increased 
expression in old fibroblasts, was identified as a potential driver of 
this activated fibroblast signature (Fig. 2d, Extended Data Fig. 2q, u  
and Supplementary Table 2n). Primary fibroblast cultures from 
elderly humans also exhibited increased EBF2 and cytokine-related  
pathway expression (Extended Data Fig. 2v, Supplementary Table 2o, p).  
Notably, fibroblast activation was a top feature associated with good 
reprogramming of old fibroblasts in both transcriptomic and epig-
enomic datasets (Fig. 2e, Extended Data Fig. 2w and Supplementary 
Table 3a–f). Hence, the fibroblast activation signature is enriched in 
old fibroblasts and correlates with the variability between mice in 
reprogramming.
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THY1+PDGFRα+ fibroblasts in fibroblast cultures of young (3 months, n = 21) and 
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Lines depict median. b, Left, Percentage of THY1+PDGFRα+Lin− out of all 
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median. Right, heat map of the expression of specific cytokine genes from 
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represents a culture from one mouse. d, Reprogramming efficiency (RE) of 
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treated daily with conditioned medium (CM) from THY1−PDGFRα+ or 

THY1+PDGFRα+ fibroblasts from the same original culture. log2-transformed 
fold change relative to THY1−PDGFRα+ fibroblasts treated with conditioned 
medium from THY1−PDGFRα+ fibroblasts (n = 5 old mice, 4 independent 
experiments). P values, two-tailed Wilcoxon signed-rank test. Each dot 
represents a culture from one mouse. Lines depict median. e, Reprogramming 
efficiency of pairs of good old and bad old fibroblast cultures treated with their 
own conditioned medium (self conditioned medium) or conditioned medium 
from the other group (swapped conditioned medium). log2-transformed fold 
change relative to bad old self conditioned medium. n = 8 pairs of good and old 
bad cultures (5 independent experiments). P values, two-tailed Wilcoxon signed-
rank test with Benjamini–Hochberg correction. Each dot represents a culture 
from one mouse. Lines depict median. f, Reprogramming efficiency of pairs of 
good old and bad old fibroblast cultures treated with their own conditioned 
medium, which was pretreated with blocking antibodies. log2-transformed fold 
change in reprogramming efficiency relative to bad old conditioned medium 
treated with IgG antibodies. n = 6 pairs of good old and bad old cultures  
(4 independent experiments). P values, two-tailed Wilcoxon signed-rank test 
with Benjamini–Hochberg correction. Each dot represents a culture from one 
mouse. Lines depict median. g, Spearman’s correlation between conditioned 
medium and the ratio of IL-6 and TNF levels in the conditioned medium (young, 
n = 19; old, n = 18; ages as in a; 2 independent experiments). Fold change relative 
to the median of young mice. P values, two-sided algorithm AS 89 in R. Each dot 
represents a culture from one mouse. h, Model for the increased variability in 
cellular reprogramming between mice in vitro.
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We wondered whether age-dependent cellular heterogeneity8,16–19 
could contribute to the variability between individual mice. To deter-
mine whether fibroblast cultures are heterogeneous, we performed 
single-cell RNA sequencing (RNA-seq) on young, good old and bad old 
cultures. Although the number of single cells profiled was low, the good 
old culture contained a higher proportion of activated cells compared 
to the two bad old cultures (Fig. 2f, Extended Data Fig. 4a–g and Supple-
mentary Table 3g). Thus, the proportion of activated fibroblasts may be 
linked to the variability in reprogramming between individual cultures.

We validated that old fibroblast cultures were enriched in activated 
cells by staining for α-smooth muscle actin (αSMA), a marker of acti-
vated fibroblasts2,3,14,15 (Extended Data Fig. 5a). These activated fibro-
blasts were proliferating and did not exhibit senescence markers (for 
example, p16Ink4a) (Extended Data Fig. 5b–e). Fluorescence-activated 
cell sorting (FACS) analysis of the pan-fibroblast marker PDGFRα3,14,19 
as well as THY120, which correlates with the activated fibroblast signa-
ture, confirmed that old fibroblast cultures contained higher propor-
tions of THY1+PDGFRα+ cells (Fig. 3a and Supplementary Table 4a–c). 
THY1+PDGFRα+ cells expressed fibroblast activation markers, inflamma-
tory cytokines and Ebf2 (Extended Data Fig. 5f). Ebf2 knockdown in these 
cells reduced expression of fibroblast activation genes (for example, 
Acta2 (which encodes αSMA), Il6 and Ccl11 (also known as Eotaxin)), 
whereas Ebf2 overexpression in young fibroblasts induced expression 
of cytokines (for example, Il6; Extended Data Fig. 5g, h). In vivo FACS 

analysis also revealed a higher proportion of THY1+PDGFRα+ fibroblasts 
in the ears of old mice (Fig. 3b), and these fibroblasts exhibited a fibro-
blast activation signature with expression of inflammatory cytokines 
(Fig. 3b, Extended Data Fig. 5i–k and Supplementary Table 4d–g). Thus, 
activated fibroblasts are enriched in old cultures and old tissues in vivo.

Notably, FACS analysis of fibroblast cultures corroborated the posi-
tive correlation between the proportion of activated (THY1+PDGFRα+) 
fibroblasts in a culture and the ability of this culture to reprogram (Fig. 3c 
and Extended Data Fig. 5l–n). Reprogramming efficiency also correlated 
positively with proliferation and negatively with senescence (Extended 
Data Fig. 5o, p). Thus, the proportion of activated fibroblasts, though 
not more variable with age, correlates positively with reprogramming 
efficiency.

We next investigated how activated fibroblasts influence reprogram-
ming efficiency. Activated THY1+PDGFRα+ fibroblasts intrinsically 
reprogrammed less efficiently than their non-activated THY1−PDGFRα+ 
counterparts (Extended Data Fig. 5q, r). By contrast, conditioned 
medium from activated fibroblasts enhanced reprogramming (of both 
activated and non-activated fibroblasts) compared to medium from non-
activated fibroblasts (Fig. 3d, Extended Data Fig. 5s–u and Supplemen-
tary Table 4h). Therefore, activated fibroblasts have opposing intrinsic 
and extrinsic effects on reprogramming efficiency, and the relative 
proportions of activated and non-activated fibroblasts in cultures from 
old mice could underlie the variability in reprogramming efficiency.
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(2 independent experiments). Left, ear wound healing curves from young mice 
and the five fastest- and five slowest-healing old mice. Percentage of wound area 
that remains on the indicated day (mean ± s.d.) Right, day of ear wound closure in 
young and old mice. Each dot represents one mouse. Line marks median.  
P values, Fligner–Killeen test to assess difference in variance between age 
groups. b, Single-cell RNA-seq of FACS-sorted PDGFRα+Lin− cells from the ear 
wounds of young mice (3–4 months, cells pooled from n = 10 mice) or old mice 
(24–26 months, cells pooled from n = 10 mice), 7 days after induction of wounds. 
Left, t-distributed stochastic neighbour embedding (t-SNE) clustering of cells 
(3,036 total; 1,592 young, 1,444 old) coloured by Seurat clusters or age. Right, 
log2-transformed fold change in the subpopulations between wounds of young 
and old mice. c, Single-cell RNA-seq of live cells from entire wounds of old mice 
(24 months) with fast-healing (n = 2) and slow-healing (n = 2) trajectories, 7 days 

after induction of wounds. t-SNE clustering of cells (n = 10,797 total), coloured by 
Seurat clusters or mouse (slow old 1, n = 3,761; slow old 2, n = 2,127; fast old 1, 
n = 2,533; fast old 2, n = 2,376). Bottom, log2-transformed fold change in the cell 
types between wounds from fast-healing compared to slow-healing old mice.  
d, PAGODA clustering of cells (n = 2,678 total; slow old 1, n = 1,087; slow old 2, 
n = 551; fast old 1, n = 441; fast old 2, n = 599) identified as fibroblasts in c. Top heat 
map, single cells from wounds from old mice with fast- and slow-healing 
trajectories. Bottom heat map, separation of cells based on principal 
component scores for a subset of the top significantly overdispersed gene sets. 
For cell PC score, maroon and blue colours indicate generally increased and 
decreased expression of the associated gene sets, respectively. log2-
transformed and normalized gene expression values calculated by Seurat and 
scaled row-wise. Bottom left, log2-normalized expression values of relevant 
genes. Each dot represents a single cell. Line marks median. Bottom right, log2-
tranformed fold change in the number of cells in each of the three fibroblast 
subpopulations identified by PAGODA.
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To analyse whether extrinsic factors drive the variability in repro-
gramming efficiency between individual old cultures, we examined 
the difference in reprogramming efficiency between good and bad 
old fibroblast cultures, treated with their own conditioned medium or 
conditioned medium that was swapped between cultures (Fig. 3e and 
Extended Data Fig. 6a–c). Reprogramming pairs of good and bad old 
cultures with swapped conditioned medium reduced the difference 
between their reprogramming efficiencies (Fig. 3e) by more than 60% 
(Extended Data Fig. 6c). Extrinsic factors thus have a substantial role 
in the variability in reprogramming efficiency between old cultures, 
and intrinsic factors are likely to underlie the remainder of the effect.

We next tested whether cytokines contribute to the role of extrinsic 
factors on the variability between mice. IL-6, TNF and IL-1β, which are all 
secreted by old fibroblast cultures, affected reprogramming in oppos-
ing directions: IL-6 enhanced reprogramming efficiency (as previously 
reported21), whereas TNF and IL-1β impaired reprogramming efficiency 
in young and old fibroblasts (Extended Data Fig. 6d–i). Consistently, 
blocking IL-6 with an antibody reduced reprogramming efficiency, 
whereas blocking TNF improved it (Extended Data Fig. 6j, k). To deter-
mine whether IL-6 and TNF contributed to the variability between mice 
in reprogramming efficiency, we reprogrammed pairs of good old and 
bad old fibroblast cultures in their own conditioned medium, which was 
pretreated with IL-6- or TNF-blocking antibodies. While blocking IL-6 had 
a minor effect, blocking TNF reduced the difference in reprogramming 
efficiency between pairs of good old and bad old cultures (Fig. 3f) by 
more than 40% (Extended Data Fig. 6l–n). The IL-6:TNF ratio correlated 
with reprogramming efficiency (Fig. 3g and Extended Data Fig. 6o–q). 
Hence, the proportions of activated and non-activated fibroblasts, and 
the ratio of inflammatory cytokines that they secrete (for example, IL-6 
and TNF), could drive the variability between fibroblast cultures of dif-
ferent old mice (Fig. 3h).

Fibroblasts are critical for wound healing in vivo2,3,14,15. Although the 
influence of ageing on wound healing has been examined2,15,22,23, the 
variability of this response is not known. We assessed the rate of healing 
in wounds on the ears of young and old mice (Fig. 4a). While the median 
wound healing rate was not significantly affected by age, there was an 
increased variability in wound healing rate between old mice, with some 
old mice healing faster and some slower than young mice (Fig. 4a and 
Extended Data Fig. 7a–g).

To determine the overall fibroblast composition in wounds from 
young and old mice, we performed single-cell RNA-seq on FACS-sorted 
fibroblasts pooled from the wounds of 10 young or 10 old mice, 7 days 
after the induction of wounds—irrespective of wound healing rates 
(Fig. 4b and Extended Data Fig. 7c, d). Fibroblast composition changed 
in wounds from old mice in vivo (Fig. 4b), with subpopulations of fibro-
blasts exhibiting signatures of fibroblast activation and increased 
cytokine signalling (Extended Data Fig. 8a–f).

We next performed single-cell RNA-seq on all cells from the wounds 
of old mice with slow- or fast-healing trajectories (Fig. 4c and Extended 
Data Fig. 8g–i). Although epithelial cells were not identified (perhaps 
owing to the isolation protocol or wound composition and as previ-
ously reported14), fibroblasts, endothelial cells and immune cells were 
identified (Fig. 4c and Extended Data Fig. 8j). Notably, fibroblasts were 
more abundant in wounds of slow-healing old mice, whereas immune 
cells were more abundant in wounds of fast-healing old mice (Fig. 4c 
and Supplementary Table 5e). Although the number of mice is low and 
differences in the composition of cells could also be influenced by wound 
stage and isolation properties, fibroblast populations may therefore be 
associated with distinct wound healing trajectories.

Clustering using both Seurat and pathway and gene set overdisper-
sion analysis (PAGODA) on wound fibroblasts from slow-healing or fast-
healing old mice identified three main subpopulations (A, B and C) that 
were enriched in different aspects of fibroblast activation (Fig. 4d and 
Extended Data Fig. 9d, e; for a combined analysis of both single-cell 
RNA-seq datasets, see Extended Data Fig. 9h–l). Whereas fibroblast 

subpopulation A was present in wounds of both slow- and fast-healing 
mice, fibroblast subpopulation B was more abundant in wounds of 
fast-healing old mice and exhibited increased cytokine expression and 
signalling (for example, Tnf; Fig. 4d, Extended Data Fig. 9d, f, k and Sup-
plementary Table 5f, g). Thus, TNF is associated with fast wound healing 
in vivo and bad reprogramming in vitro (fast wound healing might lead 
to fibrosis, which is detrimental). By contrast, fibroblast subpopula-
tion C was more abundant in wounds from slow-healing old mice and 
exhibited higher expression of other cytokines (for example, Ccl11) and 
the transcription factor Ebf2 (Fig. 4d, Extended Data Fig. 9d–g, k and 
Supplementary Table 5f, g). Activated fibroblast subpopulations with 
distinct cytokine profiles (for example, TNF compared to IL-6 or CCL11) 
may therefore be associated with increased variability in reprogramming 
in vitro and wound healing trajectories in old mice.

Our study shows that ageing is associated with an increased variability 
between mice in cellular reprogramming in vitro and in wound heal-
ing in vivo, perhaps reflecting different ageing trajectories. Increased 
variability is emerging as common feature of ageing5–8, and we identify 
inflammatory cytokines, including TNF, as key contributing factors to 
variability in reprogramming efficiency (although other intrinsic and 
extrinsic factors may also exist). Cytokine signalling may also regulate 
the variability in other ageing phenotypes, including wound healing. 
Dermal fibroblasts have been shown to lose cellular identity and acquire 
adipogenic traits during ageing19, and this increased cellular heteroge-
neity could also contribute to the differences between individual mice. 
As fibroblasts exhibit tissue-specific properties, variability in distinct 
tissues may differentially increase with age.

A subpopulation of activated fibroblasts could be a source of chronic 
inflammation in old individuals and contribute to immune cell recruit-
ment3,14,15,20. Activated fibroblasts (which proliferate) and senescent 
fibroblasts (which show permanent cell cycle arrest) secrete overlapping 
yet distinct sets of cytokines24 and may interact in a complex manner 
to influence reprogramming and wound healing. Wound healing is a 
major issue for elderly individuals, with either deficient wound healing 
(which can lead to ulcers) or excessive wound healing (which can lead to 
fibrosis)2,3,15. Changes in fibroblast subpopulations and cytokines with 
age could contribute to these pathologies and constitute targets for 
personalized strategies to restore functional wound healing in elderly 
individuals.
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