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Abstract

The theoretical and computational study of the electromagnetic forward and
inverse problems in ellipsoidal geometry is important in electrogastrography
because the geometry of the human stomach can be well approximated using
this idealized body. Moreover, the anisotropies inherent to this organ can
be highlighted by the characteristics of the electric potential associated with
current dipoles in an ellipsoid. In this paper, we present a forward simulation
for the stomach using an analytic expression of the gastric electric potential that
employs a truncated expansion of ellipsoidal harmonics; we then demonstrate
that an activation front of dipoles propagating along the body of an ellipsoid
can simulate gastric electrical activity. In addition to the usefulness of our
model, we also discuss its limitations and accuracy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The scientific area of electro- and magnetogastrography (EGG and MGG) has become
increasingly important in recent years to both clinicians and biophysicists due to the ever-
increasing body of evidence indicating that noninvasive methods of gastrointestinal (GI)
disease diagnosis are within sight. Physiologically, electric fields in the human gut are
produced by the exchange of ions between cells in the gastric smooth muscle. The movement
of these ions creates electric currents that generate magnetic fields; although of the order of
pT, these fields can be detected noninvasively using Superconducting QUantum Interference
Device (SQUID) magnetometers. SQUIDs are devices equipped with Josephson junctions that
are capable of sustaining supercurrents below the critical temperature of the metal of which
these junctions are made. Due to their design and certain properties of superconductors,
SQUIDs have the ability to measure extremely small changes in magnetic flux, which makes
them unrivaled among magnetomers in terms of sensitivity.

SQUIDs have been used to measure the weak fields of various human organs, including
the brain (electro- and magnetoencephalography), heart (electro- and magnetocardiography
(Jenks et al 1997)) and the stomach (EGG and MGG). With over 60 million patients receiving
treatment for GI diseases every year just in the US, the importance of early diagnosis and
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treatment of gut diseases cannot be overstated. The use of SQUID magnetometry for the
clinical study of gastric pathology was pioneered in the early 1990s in the Living State
Physics Laboratories at Vanderbilt University. Since then, it has been shown that SQUIDs are
capable of recording abnormal magnetic field patterns associated with various important gut
diseases, such as ischemia, gastroparesis (Rothstein et al 1993) and venous thrombosis (Allos
et al 1997). This is particularly important in light of the fact that the fatality rate for acute
mesenteric ischemia is over 50% (Everhart 1994), a figure that could possibly be lowered
dramatically if efficient, noninvasive diagnosis tools became widely available.

In the normal stomach, gastric electrical activity (GEA) manifests itself as an electric wave
that propagates across the organ with a periodicity of 3 cycles per minute (cpm) (Sharkawi
et al 1978, Turnbull et al 1999). GEA propagation starts in the upper portion of the gastric
corpus in a region of the organ that behaves like an electrical syncytium; it then advances
along the corpus in the direction of the pylorus with increasing velocity, whereafter it resets
again to the upper corpus and the cycle repeats (Jiménez et al 1999, Lin et al 2000). GEA
is mediated by the presence of the cells of Cajal (Sanders 1996, Serio et al 1991), which are
shown to be at the origin of the propagation phenomenon. In an important study conducted
at Vanderbilt University (Bradshaw et al 1997), it was demonstrated that the normal magnetic
and electric field propagation patterns of the stomach are disrupted in the event of ischemia,
which immediately drew attention to the possible use of SQUIDs as diagnosis tools for the
detection of this and other diseases (Mintchev et al 1997).

To study GEA, one must become aware of how electric sources move along the body of the
stomach during propagation. To identify the locations and orientations of these sources based
on SQUID recordings of magnetic fields, one must solve the biomagnetic inverse problem.
The related problem of computing the electric potential, electric field or magnetic field from
known current distributions is known as the forward problem. Numerous theoretical and
computational models attempting to capture the characteristics of GEA have appeared in the
literature (Irimia and Bradshaw 2003, Mirizzi and Scafoglieri 1983, Nelsen and Becker 1968,
Publicover and Sanders 1989, Rashev et al 2000), all falling into one of two broad categories,
i.e. idealized or realistic. Idealized models have the advantage of simplicity since they allow
both the forward and inverse problems to be studied with relative ease because both qualitative
and quantitative judgments are more straightforward in idealized geometries. On the other
hand, realistic models have the advantage of capturing various aspects of the modelling
problem more vividly, which makes them very useful in a variety of real-life applications
(Buist et al 2004, Pullan et al 2004, Rashev et al 2000, 2002).

The simplest of all idealized models describing GEA in the context of the quasistatic
approximation to Maxwell’s equations is the single-dipole model (Bradshaw et al 2001,
Hémaildinen and Sarvas 1987, Irimia and Bradshaw 2003). Although it makes use of significant
simplifications of the actual phenomenon, this model has proved to be useful not only in GI
modelling but also in the study of electrophysiology in other organs, most notably the brain
(Gaumond et al 1983, Hamaldinen and Sarvas 1987, Haméldinen et al 1993, Mosher et al
1992, Sarvas 1987, Wikswo et al 1993). In one of our previous studies (Irimia and Bradshaw
2003), it was shown using a simple, two-dipole model that solutions to the inverse problem
based on SQUID GI data can allow one to detect abnormal current propagation in humans.
Later on, a theoretical ellipsoidal model of the stomach based on the concept of the polarized
annular band was used to simulate the electric potential associated with the GEA (Irimia
and Bradshaw 2003); this drew attention to the significant modelling advantages offered by
the similarities between ellipsoidal geometry and gastric anatomy. We have undertaken the
present study with the purpose of creating a GEA forward model in ellipsoidal geometry using
current dipoles in the quasistatic approximation.
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In the following section, we summarize the theoretical model derived in Kariotou (2004),
where analytic expressions for computing the electric potential due to electric dipoles located
within an ellipsoid are presented. We then comment on our computational approach and
discuss the results of our simulations, particularly in terms of their realism; we conclude
that the ellipsoidal model is quite promising in terms of simulating gastric electrical activity.
Finally, we comment on the accuracy of the analytical expansions for the potential derived in
(Kariotou 2004) and employed in our study.

2. The theoretical model

We adopt the standard equation of the ellipsoid
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where (x1, X3, x3) are the usual Cartesian coordinates (x, y, z) and
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are the ellipsoidal semi-axes. As in Hobson (1955) and Kariotou (2004), we make use of
the ellipsoidal system, with coordinates p, ; and v and semifocal distances &1, i, and h3.
Conversion from ellipsoidal to Cartesian coordinates can be made via the relationships
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where p € [hy, +00), o € [h3, ho] and v € [—h3, hs).

Consider a point ry located inside a body of volume V, where a primary current dipole
source with moment Q is also located. The algebraic expression for the current density
function (Hamaildinen and Sarvas 1987, Sarvas 1987)

J7(r) = Q4(r — ro) (6)

allows one to model the phenomenon at hand as a concentration of impressed current J7 to
a point ry using the Dirac delta functional §(r — ry). The electric field E induced by the
impressed current creates an induction current

J'(r) = oE(r), (7

where o is the tissue conductivity. Since anatomical and physiological characteristics of the
human body allow for such currents to be considered quasistatic (Himaéldinen et al 1993,
Malmivuo and Plonsey 1995, Sarvas 1987, Sommerfeld 1952), the electric field is irrotational
and Poisson’s equation can be used to find the electric potential u.

The formulae for the electric potential due to dipoles located inside ellipsoids, spheroids
and spheres were derived by Kariotou (2004). For this reason, we discuss these theoretical
results only to the extent that they are necessary for understanding our study. To calculate
the electric potential due to a dipole located within an ellipsoid, separation of variables for
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Laplace’s equation in ellipsoidal coordinates leads to the Lamé equation, which assumes the
form

(x} = 3) (x7 — h3) E"(x)) + x; (2x7 — h3 — h3) E'(x;)
+ [(R3+13) P —n(n+ Dx?] E(x;) =0, )

where P,n are constants, the prime in E’ indicates differentiation with respect to the
independent variable x; = p, u or v and the factors E are the so-called Lamé functions
that form the interior harmonic function

By (0, 1, v) = E () E () EY (v). €))

Among other scientific areas, the mathematical theory of ellipsoidal harmonics is
also of interest in gravitational astrophysics (Romain and Barriot 2001), physical geodesy
(Featherstone and Dentith 1997) and numerical analysis, e.g., for obtaining solutions to the
ellipsoidal Stokes problem (Ritter 1998). The general solution to Poisson’s equation

Au(r) = éV <JP(r), reV- (10)

in this coordinate formulation is a superposition of an interior harmonic function ®(r) and of
the function
1
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where the superscripts (—) and (+) denote quantities referring to the interior and exterior,
respectively, of the volume for which Poisson’s equation is solved (in this case the volume
V is the ellipsoid). Upon substitution of the formulae for the interior harmonic function and
Laplace operator (Miloh 1973) into equation (10), the interior potential assumes the form
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In the equation above, I are elliptic integrals of the form
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withn =0,1,...,m =1,2,...,2n + 1. Throughout this section, we also use the symbols
b™, y", A and A’. b} is an arbitrary constant whose presence ensures that the potential is
invariant under gauge transformations (we assign to it the value O in this study), while the
rest are normalization constants whose formulae are given in equations (27)—(32) and (44) of
Kariotou (2004) in terms of the «; and spatial coordinates x;.

As one can see, the interior potential is an infinite summation of terms involving
the ellipsoidal harmonics E}’. According to a result by Stieltjes (Ritter 1995, Ritter
1997), the Lamé function E)'(p) (equation (13) in Ritter (1995)) has at most n simple
zeros 6, ., ..., 0%k < n. Because identifying all roots is algebraically impossible for
polynomials of order 5 and higher, analytic expressions for u exist only up to second order in
E’. Better approximations to the electric potential could, in principle, be obtained only by
implementing a numerical algorithm for finding roots or with another numerical technique.
Alternatively, it may be possible to follow the approach of Hobson (1955) and to derive
the required higher order contributors to # by making use of certain relationships between
ellipsoidal and spherical harmonics (see Dechambre and Scheeres (2002) and Ritter (1998)
for a detailed review of this theoretical problem). In this study, we adopt the approach of

13)
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Kariotou (2004) and compute the potential using only terms that involve polynomials of
degree less than 3. The potential thus obtained is given by
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Analogously, the formula for the exterior potential u* is given by
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As already noted, the formulae above involve only ellipsoidal harmonic terms of degree 1 and
2; this effectively constitutes an approximation of the expression in equation (12), which is an
infinite summation of such terms. More on the possible effect of this approximation will be
said in a future section.

15)

3. The computational approach

We adopt a gain transfer matrix approach (Mosher 1993) to compute the electric potential due
to dipoles located inside an ellipsoid. In this formulation, the vector v containing computed
electric potential values at time j can be modelled as

P
V() =) G)ai())

i=1

=[GM) - GU)Nai () ---qp(NI

= GHq()), (16)

where the superscript T indicates the transpose of a matrix and
I=1[---1,]" (17)
q=I[d--q,]" (18)

are column vectors that consist of concatenations of parameters for the p dipoles. The
quantities ; and q; are 3-vectors indicating the locations and orientations of the dipoles,
respectively. The matrix G is called the ‘gain transfer matrix’ for the ith dipole. If the dipole
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Figure 1. Geometric models for the forward problem of electrogastrography. In these figures,
the stomach is simulated as an ellipsoid with (a1, a2, @3) = (7.5, 5.0, 4.0) cm. Propagation starts
on the right-hand side, from the extremity of the ellipsoid, and proceeds along the x-axis in the
negative x direction. In (a), only the mesh definition is shown. In (b), the propagation surface
is shown with dipoles oriented in the direction of propagation. Each circular band of dipoles
corresponds to a particular time point during the propagation cycle. For illustration purposes,
dipoles are shown only for eight such equidistant time points. In (c), the dipoles are perpendicular
to the propagation surface and in (d) the dipole vectors have a component that is parallel to the
direction of propagation and another that is perpendicular to it. The body of the ellipsoid in (a)
and (b) is opaque, whereas in (c) and (d) it is transparent so as to allow one to visualize the dipole
vectors located inside the ellipsoid.

locations are kept constant while their orientations are varied with time, the model can be
extended to capture the time-dependent variability of the sources. Thus, for n time points, we
have

A=[a---a,]
=GMq; - qu]
=GDQ. (19)
In our problem, the entries in the gain transfer matrix are computed using the formulae for
the potential presented in the previous section to obtain the potential due to each dipole at the
required locations.
The geometry of our problem is shown in figure 1. Each propagation cycle begins on
the right-hand extremity of the ellipsoid (positive x) and the direction of propagation is the

negative x direction. As shown in the figure, the paths assumed by the dipoles are directed
longitudinally, along the greater dimension of the idealized gastric body. Each incremental
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time step during the propagation process brings about a change in the position of the activation
front along the axis of propagation, as the image suggests. Distance increments in the activation
front position along the propagation path are equal for all time segments. In other words, the
longitudinal lines drawn from the positive to the negative extremity of the ellipsoid in the x
direction correspond to the paths assumed by the current dipoles during propagation. The
elliptic ‘slices’ whose lines are perpendicular to the direction of propagation correspond to the
time points of the simulation. In our approach, 20 s are necessary for the simulated activation
front to propagate from one end of the ellipsoid to the other.

To compute the appropriate locations of the dipoles during each cycle (based on the
restriction that the distances between consecutive time points must be equal), the line (path)
integral of each current dipole is computed along the direction of propagation, over the extent
of each time segment involved. Since the path is a semi-ellipse as indicated by the geometry,
the resulting expression assumes the form

foef G
\/ a2x2 X2\~
/ 1+ 1——2) dx, (20)
o

where ds is the path increment and ¢, , are any two successive time points during the propagation
cycle. In our computational approach, the integral above is computed numerically using
Simpson’s % rule. This is also done for the elliptic integral in equation (13), which is evaluated
numerically. The values assumed for the ellipsoidal semi-axes are («j, o, a3) = (7.5, 5.0,
4.0) cm and an experimentally measured value of 0.45 Q! m~! (Bradshaw et al 2001) is used
for the conductivity o of the gastric body.

Because the velocity of propagation along the gastric corpus varies from around
0.3 mm s~! at the beginning of a cycle to approximately 4-5 mm s~! at the end (Mirizzi
and Scafoglieri 1983), this characteristic was also included into our model. Specifically,
a linear dependence of the propagation velocity upon time was assumed for the purpose
of our study and the initial and final velocities mentioned above were used to determine
the appropriate velocity function. Because our dipoles travel along an ellipsoid and their
trajectories are therefore semi-elliptical, the distances travelled by the dipoles were used to
associate their locations during the simulation with corresponding time points during the
propagation cycle. This was necessary because, although the distance increments used were
the same due to our mesh definition (see figure 1), the nature of the velocity function implies
that the associated time increments are not. In computing the appropriate time intervals
corresponding to equidistant points of successive displacement along the dipole trajectory,
the elliptic perimeter p was calculated using the rapidly converging Gauss—Kummer series
expansion, given by

oo l 2
p=r@rary(;)
n=0

_ SRS
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Figure 2. The electric potential # simulated using the ellipsoidal model for a point located on the
upper side of the ellipsoidal surface. The orientation of the dipoles used to produce this wave is
parallel to the direction of propagation.

An interesting aspect of our problem concerns the orientation of current dipoles during
the propagation cycle. In one view concerning this problem, dipoles are oriented inwards
with respect to the surface of the ellipsoid, i.e., perpendicular to the surface of propagation.
The motivation for this approach is the fact that the cellular exchange of ions in the stomach,
mediated by the cells of Cajal, takes place between the concentric tissue layers of the stomach,
hence the orientation of the dipoles should be inwards with respect to the propagation surface.
The theoretical model capturing this view of the phenomenon was derived by Irimia and
Bradshaw in a previous study (Irimia and Bradshaw 2003), to which we refer the reader for
the complete derivation. The expression predicting the orientation of current dipoles in this
model is given by

Vé
—407g .
V&
where ¢ is in this case the assumed dipole strength gy = |qo|, V&/|VE] is the normalized

downward unit vector with respect to the ellipsoidal surface S, and & is a function whose
gradient is perpendicular to S, such that equation (23) is satisfied:

(23)

E(x1, X2, X3) =X — 2 (24)

The second approach to this problem is based on the fact that propagation is observed in
the stomach along the corpus and towards the pylorus and dipoles should therefore be oriented
in the direction of propagation. This argument requires the computation of the unit tangent
with respect to S, with a direction indicated by the direction of propagation along the surface.

To help clarify this issue, we have chosen to produce simulations using both models, in
order to determine which one captures the characteristics of the GEA more suitably. In the first
case, the dipole orientation function is computed analytically; in the second case, advantage
is taken of the geometry and mesh definition shown in figure 1 to compute the unit tangent
vector numerically, using a simple interpolation algorithm. Finally, a third type of simulation
was generated, in which the dipole orientation function is a linear combination with different
weights of the two functions described above.

4. Results and discussion

Computational results of our simulations are presented in figures 2 and 3. The point for
which the potential is evaluated corresponds, in both cases, to the extremity of the ellipsoid in
the z (vertical) direction. Thus our waveforms attempt to reproduce the bioelectric potential
as recorded on the upper extremity of the gastric wall. This simulated waveform agrees
reasonably well with experiment and with other simulations obtained with various models



Ellipsoidal electrogastrographic forward modelling 4437

30

u[mV]

time [s]

Figure 3. Same as figure 2, but the orientation of the dipoles is perpendicular (as opposed to
parallel) to the direction of propagation.

(see, for example, Bradshaw ef al (2001)). Notable features are the presence of the upstroke
followed by the sustained repolarization phase, two characteristics that have been observed
experimentally and explained theoretically by activation models (Bradshaw et a/ 2001, Irimia
and Bradshaw 2004). In figure 2, the orientation of the dipoles is along the direction of
propagation, as opposed to figure 3, where the dipoles are perpendicular to the ellipsoidal
surface. The parallel dipole model waveform in figure 2 is able to reproduce the upstroke that
is characteristic of experimentally recorded EGG, whereas the perpendicular dipole model in
figure 3 is not. In addition to the two cases above, simulations were produced for the scenario
where the dipoles had both a parallel (Q,) and a perpendicular (Q,) component with respect
to the surface of propagation' as in figure 1(d), where the linear combination is given by

Q =0.8Q, +0.2Q,. 25)

The criterion for the choice of coefficients specified above was based on the physiology and
anatomy of the problem. Thus, because the stomach wall is much thinner than it is long
with respect to the propagation direction, the coefficient of the perpendicular dipole vector
component was selected to be 0.2, i.e., smaller than that for the parallel vector component,
which was assigned the value 0.8. With this chosen linear combination of vectors, the resulting
waveform was found to be very similar to that in figure 2; this is why, for brevity, it is not
reproduced here.

Three-dimensional visualizations of the simulated gastric surface potential are shown in
figure 4, where the observed characteristics of the gastric electrical activity are simulated. To
acquire a correct understanding of what is conveyed in this figure, it is necessary to analyse it
by making close reference to figure 2 because figure 4 shows the evolution of the ellipsoidal
surface potential as a function of time for the parallel dipole model. Since the waveform
simulated for this model is presented in figure 2, a close relationship exists between the
physical quantities depicted in these two figures. Each image in figures 4(a)—(f) depicts a
snapshot of the ellipsoidal surface potential throughout the 20 s propagation cycle. In each of
these 3D plots, current dipoles are shown in red on the propagation surface with orientations
specified by the direction of propagation. The dipoles are located on the isopotential ring where
the electric potential reaches a maximum (bright yellow in the figures); this ring corresponds
to the potential spike in figure 2. In figures 4(a)—(f), one can also see an elliptic isopotential
region immediately behind the ring of propagating dipoles. This band separates the dipole ring
(which is at a maximum of the potential) from the portion of the ellipsoid located immediately
after the band (where the potential decreases gradually from bright yellow to dark green). The
portion of the separating band closest to the ring of dipoles corresponds to the resting potential

! The realism of this particular approach and its excellent agreement with noninvasive magnetoenterographic
recordings were recently confirmed (July 2005) using the application of an inverse FEM algorithm in the context of a
realistic anatomic human model (A S H Lin 2005 Modelling of the slow wave in the small intestine and its associated
magnetic field M. Eng. Thesis University of Auckland, Auckland, New Zealand).
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Figure 4. Visualizations of the simulated electric potential on the surface of the ellipsoid throughout
an ECA cycle of 20 s. The colour map varies from bright yellow at 30 mV to dark green at 0 mV.
The time instants during the propagation cycle that correspond to each of the images in (a)—(f)
are (left to right and top down) 3, 7, 10, 13, 17 and 20 s, respectively. In (a), the beginning of
a propagation cycle is shown with the associated current dipoles drawn in red with orientations
determined by the direction of propagation. The gastric pacemaker is located in this figure on the
right-hand extremity of the ellipsoid, in agreement with the physiological characteristics of the
stomach. In (b)—(e), the band of dipoles advances along the gastric syncytium in the direction of
the pylorus. In (f), the dipoles have reached the pylorus and can be seen as a concentration of red
vector arrows on the left-hand extremity of the ellipsoid. On the opposite (right-hand) extremity,
a new propagation cycle is about to begin.

plateau depicted in figure 2. Finally, the region of zero potential lying in front of the dipoles
on the left-hand side corresponds to the resting potential of the GI tissues after the passage of
a dipole band in the previous cycle.

The ellipsoidal model is important at a theoretical level because it offers one of the
very few geometries in which expressions for the electric potential and magnetic field due to
current dipoles can be formulated analytically. This key aspect of theoretical GI modelling was
emphasized in Irimia (2005) and Irimia and Bradshaw (2003), where the ellipsoidal model was
used to simulate the gastric electric potential throughout a typical GEA propagation cycle. To
further our understanding of the GEA phenomenon, however, it is imperative to improve our
knowledge—both qualitative and quantitative—concerning the spatial resolutions of different
inverse methods in the context of EGG and MGG. This is important because, although we are
now able to detect disease states of the gut, our understanding of pathological GEA remains
limited; improved spatial resolution for inverse methods is thus critical for the study of GI
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processes at the tissue and even cellular level. In this context, the forward model presented in
this paper is relevant in view of future work in the area of inverse algorithm comparison and
validation.

To predict the possible diagnostic relevance of our model in the context of inverse
modelling, it may be useful to consider the past use of ellipsoidal geometry in the area of fetal
MEG (fMEG), where Gutiérrez et al (2005) employed an ellipsoidal head model to obtain
both forward and inverse solutions that can characterize neural development in newborns.
Their motivation for using the ellipsoidal model came from an earlier analysis by Vrba et al
(2004), who had concluded that the spherical head model was superior to the uniform abdomen
model in fMEG. However, because the sphere does not provide an accurate approximation
to fetal head anatomy, the ellipsoid was chosen instead by the authors in order to increase
the realism of their implementation as well as the ability of their model to capture important
fMEG information. Thus, theirs is yet another example showing that the tendency to replace a
simple idealized model with one that is more realistic is a powerful driving force in biophysical
modelling. A line of reasoning analogous to that of Gutiérrez et al quite possibly applies to the
case of EGG, where the stomach has been modelled as a cylinder, cone or conoid (Bradshaw
et al 2001, Mirizzi and Scafoglieri 1983, Rashev et al 2000, 2002). Such studies found that
idealized models with closer and closer resemblance to gastric anatomy could offer greater
and greater improvements in their ability to characterize normal and pathological conditions
in humans (Rashev et al 2002). Thus, although specific details regarding the superiority of
the ellipsoidal EGG inverse model over other candidates are not currently available because
inverse solutions have not yet been implemented for it, we believe that the ellipsoidal EGG
model may nevertheless be very valuable in light of the arguments presented above. For
example, we believe that the uncoupling of gastric electrical sources due to gastroparesis will
be easier to characterize with our model than with a simpler, free-space dipole model, which
has already been applied to human data with partial success (Irimia and Bradshaw 2004).

To ensure the correctness, accuracy and complete agreement of our computational codes
with the theory presented in the previous sections, all calculations were verified by hand
for selected values of the electric potential. Because the theoretical model employed here
makes use of a truncated infinite summation of ellipsoidal harmonic terms, we have sought
to understand the effect of truncation upon the accuracy of the results obtained. In analogy
with the theory of spherical harmonics as applied to Laplace’s equation, one can expect that
the contributions of harmonic terms to the potential should diminish as the order of these
terms increases. For the case of a dipole in a sphere, this conclusion can be easily verified by
inspection of the formulae for the potential that were first derived by Frank in 1952 (Frank
1952) and later implemented, among others, by Purcell ez al (1991), Schmidt and Pilkington
(1991), and He and Norgren (2000). For the sphere, the expressions for the potential involve,
in a manner analogous to the ellipsoidal case, an infinite summation over spherical harmonic
terms. However, these expressions have closed forms associated with them (Frank 1952),
which eliminates the need for truncating the infinite summations over spherical harmonics
when the potential is evaluated. Furthermore, since closed form solutions are available, one
does not have to worry about the issue of accuracy that must be taken into account when a
truncated expansion is used. In the ellipsoidal case, closed form solutions are not available
in the literature. This is a serious drawback because one is then forced to investigate the
error associated with the ellipsoidal expansion used to compute the potential. For the problem
at hand, expressions for the potential u involving higher order harmonics (degree >3) have
not yet been derived (April 2005). As a result, we have attempted to address the issue of
accuracy by investigating the extent to which first- and second-order terms contribute to u
in our simulations. Because these harmonic terms can be of either negative or positive sign,
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Figure 5. Probability density functions for the magnitudes of ellipsoidal harmonic terms
contributing to the potential u computed for the surface of the simulation ellipsoid. The terms
Si,i =1, ..., 4 are the four summations (terms of order lower than 3) in equation (14). Although
lowest order terms are important, the magnitudes of second-order terms are also non-negligible.

acquiring a quantitative understanding of how much higher versus lower order terms contribute
to the actual potential is a delicate matter due to the possible effect of cancellation between
terms of identical or different order in equation (14).

In light of these issues, we have chosen to compare the magnitudes of harmonic terms
that contribute to each individual value of u computed during a typical simulation. The
results of this quantitative comparison is presented in figure 5. To produce this figure, we
first normalized the magnitude of every harmonic term contributing to each value of u with
respect to that contributor which had the highest magnitude. To explain this in mathematical
notation, consider a computed potential value, call it #, given numerically by the four terms in
equation (14), i.e.,

uy =by+ S, — S+ S5+ 84, (26)
where Si, $>, S3 and Sy are the four summations (terms of order less than 3) in that equation.
To compare the contributions of these terms to the potential, the valuesof S;,i = 1, ..., 4 were

normalized with respect to max{S;}. During our simulations, the values of these normalized
harmonic terms were recorded for all values of the potential evaluated on the surface of the
ellipsoid. Furthermore, the probability distribution functions for each of these terms were
computed to acquire a quantitative understanding of how important they are to the evaluated
potential.

In figure 5, the probability distribution functions of the normalized harmonic terms are
presented. As the figure demonstrates, there is a high probability that any of the terms
included—regardless of their order—contributes substantially to the computed potential. This
becomes apparent upon examination of the probability range [0.9, 1.0] in our figure. Another
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issue to be noted is that the significance of contributions by first- and second-order terms
to the potential oscillates greatly between the two extremes. What this may imply is that,
from a quantitative standpoint, both first- and second-order harmonic terms can be equally
important in the evaluation of the potential, at least in the case of the problem at hand. To better
understand our argument, it is useful to consider the same potential problem but for the case
of the sphere, where the magnitudes of higher degree contributors to the potential decreases
rapidly as the degree of such terms increases. If this feature of the spherical problem were to
be used to predict the behaviour of high-degree terms in the ellipsoidal case at hand, one would
expect that, overall, second-degree terms would contribute less than first-degree terms. This,
however, is not what figure 5 suggests. Letting f; represent the probability density function
associated with ellipsoidal terms of order &, figure 5 makes it clear that the terms Sz and S4
associated with second-degree terms are important because the integral
1.0

fedf (27)

0.9
for k = 2 is comparable in magnitude with the same integral associated with the first-degree
terms, for which k = 1. In other words,
1.0 1.0

fidf ~ fadf. (28)
0.9 0.9

This means that, probabilistically, the contributors to the potential associated with the first-
and second-degree terms are comparable in magnitude and that the spherical case does not
provide a clear analogy with the ellipsoidal case. This may suggest that further theoretical
and/or computational investigation is required in order to obtain expressions for u that
include harmonic terms of degree higher than 2. Such work may help in clarifying how
large the approximation (series truncation) error is for equation (5) as derived in Kariotou
(2004). Finally, we note that the importance of high-order ellipsoidal harmonic terms was also
emphasized by Sona, who demonstrated that such terms have a significant role when solving
geodetic boundary value problems (Sona 1995).

In our modelling case, higher order harmonic terms may not significantly affect the
simulated waveforms presented in this paper from a qualitative standpoint. We believe this is
the case because of the good qualitative agreement of our present results with experiment and
previous studies that used other models. For example, a free-space dipole model implemented
by one of the present authors (LAB, see Bradshaw et a/ (2003)) yielded waveforms very
similar to ours; furthermore, both our present results and those in Bradshaw et al (2003) are
in agreement with earlier theoretical studies by Familoni et a/ (who simulated the propagation
of dipoles in cylindrical geometry (Familoni et al/ 1987, 1995)) and even with the earlier
study of Sarna et al, who employed a coupled oscillator model (Sarna et al 1971). Our
theoretical results are also in agreement with a wide range of experimental results, ranging
from a very early study by Bozler (1945) conducted in 1945 to recent ones (2001)—(2004)
by Zhu and Chen (2004), Parkman et al (2003) and Horiguchi er a/ (2001), etc. Thus,
higher order contributors to the potential may not be essential when only forward modelling
is concerned. However, the situation may be quite different in the case of inverse modelling.
There, because of the ill-position of the inverse problem, small changes in the measured or
simulated potential can cause significant changes in the reconstructed sources. The ellipsoidal
expansion derivations of Kariotou were published in 2004 (Kariotou 2004). Already, a very
recent study by Gutiérrez et al (2005) published in 2005 used the very same geometry and
harmonic expansions to second order that were employed in this paper to obtain inverse
solutions from fetal magnetoencephalographic recordings. Since their approach was applied
in the context of encephalography and involved a different number of dipoles with different
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activation patterns being studied, our observations regarding the issue of accuracy may not be
directly applicable to their study; it would therefore be premature and ill-advised to criticize
the accuracy of their results solely on this basis. However, we believe that our present study is
timely and extremely important because our results can draw attention to the fact that the issue
of ellipsoidal forward model accuracy is not entirely elucidated and needs further investigation.
Solving this matter possibly involves the process of validating the use of inverse procedures in
ellipsoidal geometry based on an analysis of the error associated with the number of harmonic
terms included in the forward model.

5. Conclusion and future research

Modelling the GEA using the ellipsoidal model is useful because it allows one to explore
many important problems related to gastric physiology in a simplified and idealized geometry.
Although the approximation errors associated with this formulation remain an open issue, we
have shown here that the electric waveform simulated with this model is able to reproduce
very well key characteristics of the GEA waveform. Future research will have to determine
the optimal size of the ellipsoidal harmonic expansion to be included in the forward model
when inverse solutions based on such a model are to be attempted.
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