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Abstract

The beam-foil method and the computation of oscillator strengths with correlated
wave functions both had their beginning in the late 1960s. The stimulating interplay
between theory and experiment will be reviewed. With the power of todays
computers, great progress has been made in computation. The current state of
spectrum calculations using the multiconfiguration Hartree-Fock method will be
described and the importance of relativistic effects mentioned.

1. Introduction

Atomic spectra and energy levels of B I –V were still incompletely
known in 1970. In a paper published by Martinson, Bickel,
and Ölme [1] at that time, 17 new lines were classified, the
wavelengths of 29 new lines measured with some suggested
transitions, and 38 lifetimes reported. The method used was the
newly developed beam-foil method [2] whose use proliferated
during the 1970’s providing extensive data for both neutral
and highly ionized atoms. This data was of great benefit to
theory.

Even though boron has relatively few electrons, theoretical
calculations were limited and those for B I and B II were consid-
ered to be only 50% accurate. Thus the boron paper contained no
comparison with theory, only with other experimental methods.

The 1960’s was a period in which theory was developing the
use of stored program electronic computers and their application
to atomic structure properties. The FORTRAN compiler was
formally released in 1957 but did not become widely available
until the early 1960’s. Until that time, programs were written
in either machine or assembly code specific to the widely
varying hardware of the computers. With the availability of the
FORTRAN compiler, programs became portable and for the first
time it was feasible to develop code that could be used with
modest effort on different computers. Memory was still a severe
constraint and the first multiconfiguration Hartree-Fock (MCHF)
program published in 1969 [3] was dimensioned for interaction
matrices of at most 5 × 5. The emphasis was also very much on
“understanding the physics.” With larger matrices the ability to
visualize the interaction was impaired to the extent that some
scientist considered such calculations “numerology.” Today it
is recognized that for accuracy from an ab initio configuration
interaction model, exceedingly large matrices will be needed.

The late 1960s and the 1970’s were devoted largely to learning
about the effect of correlation on the oscillator strength and its
behavior along an iso-electronic sequence. An excellent example
is the 3s23p 2Po – 3s3p2 and 3s23d 2D transitions [4]. Because
these two configuration states (CSFs) interact strongly, the two
2D states, which we shall refer to as 2Du and 2D� for upper and
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Fig. 1. The effect of correlation on the transition matrix element.

lower respectively, have wave functions that exhibit considerable
mixing. In fact, the dominant configuration state of 2D� changes
from 3s23d for the nuclear charge Z = 13 to 3s3p2 for higher Z.
But, when plotting the transition matrix element, it is the matrix
element for the lower and upper that are continuous functions
of Z, as shown in Figure 1. The short curves are Hartree-Fock
results. The length and velocity results for 2D� are in excellent
agreement but the transition energies are wrong, demonstrating
clearly that agreement of the two gauges is a necessary but
not sufficient condition. The figure also shows that the effect
of configuration interaction on the transition matrix element for
the upper state is one of enhancement whereas the effect on the
lower state is cancellation. In fact, the latter transition matrix
element changes sign along the sequence. It is also seen that the
effect of the interaction remains significant over a wide range of
nuclear charges. Such interactions are considered “long range”
interactions whereas some, often in regions of a cross-over, are
“short range”. Transition calculations in those days were “hand-
crafted” with considerable trial and error in the inclusion of
configuration states in the wave function. In 1975, Nicolaides
and Beck [5] proposed a first-order theory for oscillator strengths
(FOTOS) which identified the configuration states that contributed
to the matrix elements to first order. The transition energy was not
considered.

Beam-foil methods were providing a wealth of data for iso-
electronic sequences, making possible a mutually beneficial
comparison between theory and experiment. When cancellation
occurs, the matrix element is more likely to be in error, thus it was a
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Fig. 2. The weighted oscillator strength for the 3s23p 2Po – 3s23d 2Du transition.

surprise in 1976 to learn that the oscillator strengths for transitions
to 2D� were in better agreement with beam-foil data than for 2Du

where there was enhancement [6, 7]. Figure 2 shows a typical
trend. The experimental values for Si II are from Ref. [8, 9] and
the others from Ref. [10].

Martinson et al. [11] analyzed a number of sequences of
interest in fusion research. Good agreement with calculations
that included correlation was usually found though the values
tended to diverge from each other as Z increased. Cascading
was known to be a problem and simulated decay curves were
produced that showed cascading to become less serious as Z

increased. In a paper on the discrepancies between theoretical
and experimental oscillator strengths of the sodium sequence [12],
extensive computer simulated decay curves were produced and the
conclusion was that the 3p meanlife should be extractable. The
later computer simulation by Younger and Wiese [13] went a bit
further and showed clearly that the customary multi-exponential
fitting methods could not accurately extract the lifetime of the 4p
level in the similar copper sequence. In 1985, a renewed study of
singly ionized boron was published by Bashkin et al. [14]. By this
time, there was extensive comparison with numerous theories and
agreement was excellent, often differing by less than 5%. But the
lifetime of 2s3s 1S0 was missing.

2. Systematic methods

Early calculations were guided by theories such as FOTOS [5] or
Z-dependent theories for oscillator strengths [6]. Such theories
neglected the fact that it was necessary to predict both the
transition energy and the transition matrix element accurately. The
multiconfiguration Hartree-Fock (MCHF) achieved this through
the introduction of systematic methods [15] for both energies and
matrix elements.

The non-relativistic multiconfiguration Hartree-Fock (MCHF)
approach is used for calculating the wave function � for the state
labeled �LS,

�(�LS) =
∑

i

ci�(�iLS), (1)

where � usually represents the dominant configuration, and any
additional quantum numbers required for uniquely specifying
the state. The MCHF wave function � is expanded in terms

of configuration state functions (CSFs) (�) having the same LS

symmetry but arising from different electronic configurations or
couplings (�i). The CSF’s are built from a basis of one-electron
spin-orbital functions

�nlmlms
= 1

r
Pnl(r)Ylml

(�, �)�ms
. (2)

The MCHF procedure [16] consists of optimizing to self-
consistency both the sets of radial functions {Pnili (r)} and mixing
coefficients {ci}. Thus the CSFs included in the expansion
determine the radial functions.

In large scale methods, systematic calculations are performed
of increasing size that allow the monitoring of properties under
investigation. In such systematic methods, active sets (AS)
of orbitals are used to determine the expansion. These are
characterized by the largest principal quantum number. Thus the
n = 3 active set consists of all the orbitals {1s, 2s, 2p, 3s, 3p,
3d}, though it should be remembered that for correlation orbitals
(orbitals not occupied in the Hartree-Fock approximation), the
principal quantum number is not important spectroscopically, but
serves as a simple index for the orbital of a given symmetry. Given
an active orbital set, rules are used to generate the CSF expansion
according to some model. Generally there is an inactive core that
does not participate in the correlation. The remaining electrons
may include some filled shells and open or valence shells. It
is essential to include valence correlation and configurations
that account for the polarization of filled shells by the valence
electrons, also referred to as core-valence correlation. For high
accuracy, it may be important to include correlation in the filled
shells.

The rules for obtaining expansions are often expressed in
terms of a number of excitations – singles (S), doubles (D),
etc. However, in order to allow for the degeneracy of orbitals
at higher Z, it is convenient to express the rule in terms of the
set of possible principal quantum numbers. To curb the rate of
growth of the expansions with the orbital set size, it may be
convenient to define the CSF set as the union of two sets. Typically,
systematic methods perform a series of calculations where the
rules are applied to active sets of increasing size.

Through the use of systematic methods, and the biorthogonal
transformation to compute transition matrix elements between
two wave functions whose orbitals have been optimized
independently [17], a very accurate line strength was obtained for
the resonance transition of sodium which, when corrected for
a small relativistic effect, was in near perfect agreement with
the most recent experimental analysis, resolving a long standing
discrepancy between theory and experiment [18]. It also is
possible to monitor convergence of the transition energy and
the length and velocity forms of the line strength as a check
on the correlation model. If the transition energies converge,
but length and velocity line strengths are not in adequate
agreement, some significant correlation has been neglected by the
model.

Table I shows some typical examples from B II. For the
2s2p 1Po – 2s3s 1S transition, the transition energies have con-
verged, the velocity form of the line strength is quite stable, but
the length value is still decreasing. This is an example where
the velocity form is the more stable, but note the cancellation
in the line strength of almost two orders of magnitude in going
from n = 3 to n = 10. For the 2s2 1So – 2s3p 1P transition, the
transition energies have converged to a fraction of a cm−1 and the
two values of the line strength agree to four significant digits.
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Table I. LS trends for some transitions in
B II.

n �E(cm−1) Sl Sv

2s2p 1Po – 2s3s 1S

3 64323.23 0.19487E+00 0.12393E+00
4 64430.35 0.56963E−01 0.17070E−01
5 64289.21 0.17475E−01 0.54420E−02
6 64251.51 0.67517E−02 0.32807E−02
7 64251.83 0.42708E−02 0.26336E−02
8 64257.85 0.34656E−02 0.24064E−02
9 64259.85 0.28858E−02 0.22607E−02

10 64260.02 0.26510E−02 0.22252E−02

2s2 1So – 2s3p 1P
4 144348.64 2.37153D−01 2.47256D−01
5 144179.85 2.45036D−01 2.46718D−01
6 144162.67 2.46939D−01 2.48330D−01
7 144147.52 2.47682D−01 2.48190D−01
8 144145.61 2.48183D−01 2.48370D−01
9 144145.39 2.48394D−01 2.48433D−01

10 144145.15 2.48499D−01 2.48517D−01

3. Spectrum calculations

Most recently, transition probability calculations have advanced
from the study of individual lines to the study of the spectra of
an isoelectronic sequence. This latter now requires that relativistic
effects be included. That means that the configuration states in LS

expansions for various terms must be concatenated and eigenstates
of the interaction matrix for the Breit-Pauli interaction matrix
determined. The MCHF method was extended so that orbital sets
could be optimized for a weighted average of energy expressions
for different LS terms or different eigenstates of an LS term [19].
Once orbitals sets for interacting LS terms were determined, the
intermediate coupling LSJ wave functions for all levels of the
terms could be determined from Breit-Pauli interaction matrices.
Spectrum calculations used this scheme to compute all levels of
a spectrum up to a certain level. From these wavefunctions, all
possible E1 and some E2 and M1 transitions were computed from
which the lifetimes of the levels could be determined. Table II
shows the energy levels, their splitting relative to the lowest
level of a term, and the lifetimes of levels in B II. Note that the
lifetime of 2s3s 1S is almost three orders longer than the lifetime
of 2s3s 3S which explains why it was so elusive in beam-foil
experiments [20].

Such calculations produce extensive transition data for which
an online web-based database was implemented together with
a search capability facilitating the search of data in spectra or
iso-electronic sequences [21]. Along with the theoretical data,
the NIST energy level data [22] was included so that a search
can yield some indication of accuracy. Table III shows part
of this data. In addition to transition data, the error in the
transition energy in percent, E(%), is provided along with the
discrepancy in the transition probabilities between the two gauges
in percent, T (%), for the 2s2p – 2s3s transitions. For the 3Po – 3S
transition both accuracy indicators are high. One would expect
similar accuracy for the 1Po – 1S allowed transition, but now the
error in the transition energy has reached 3.23%. Fortunately,
Martinson et al. have performed another beam-foil experiment
with higher resolution and sensitivity and the 2s3s 1S excitation
energy has been revised [20]. Once the NIST energies are revised,
the error in the singlet-singlet transition energy reduces to 0.10%
but because of the cancellation seen in Table I, the discrepancy

Table II. Theoretical spectrum for B II up to
2s3d 1D2.

Config. LS J Energy (cm−1) Splitting � (s)

2s2 1So 0 0.00
2s2p 3Po 0 37468.95

1 37475.16 6.20 9.529e−02
2 37491.43 22.47 5.792e+02

2s2p 1Po 1 73583.67 8.295e−10
2p2 3P 0 99236.79 1.146e−09

1 99245.38 8.59 1.146e−09
2 99258.85 22.06 1.146e−09

2p2 1D 2 102702.89 1.817e−08
2p2 1S 0 127993.86 7.471e−10
2s3s 3S 1 129913.75 9.138e−10
2s3s 1S 0 137859.05 6.309e−07
2s3p 3Po 0 144149.50 2.504e−08

1 144150.73 1.23 7e−08
2 144154.17 4.67 2.502e−08

2s3p 1Po 1 144278.16 1.688e−09
2s3d 3D 1 150837.05 4.077e−10

2 150837.16 0.11 4.077e−10
3 150837.72 0.67 4.078e−10

2s3d 1D 2 154881.70 7.214e−10

Table III. Results of a database search for 2s2p – 2s3s transitions.
Included are the theoretical wavelengths 	, the line strength S, the
transition probability Aki, the error in the transition energy E(%)
and the difference in the transition probabilities in length and
velocity T (%).

gi gk 	 S fik Aki E(%) T (%)

3Po – 3S
1 3 1081.73 2.278e−01 6.397e−02 1.216e+08 0.01 0.7
3 3 1081.80 6.837e−01 6.399e−02 3.647e+08 0.01 0.7
5 3 1081.99 1.140e+00 6.403e−02 6.080e+08 0.01 0.7
3Po – 3S
3 1 996.18 4.035e−08 4.101e−09 8.270e+01 2.12 4.9
1Po – 3S
3 3 1775.26 2.917e−07 1.663e−08 3.521e+01 −0.08 −21.6
1Po – 1S
3 1 1555.81 2.946e−03 1.917e−04 1.585e+06 3.23 13.0

T (%) is much larger than for the triplet-triplet transition. The
error in the transition energy for the triplet-singlet transition
reduces to 0.01%. Though with this correction to the observed
energy excitation data, the transition energies are accurate to
0.1%, the discrepancy in the two gauges is larger. This can be
attributed to cancellation in the case of singlet-singlet matrix
elements but it also has to be recognized that the velocity form has
omitted some relativistic corrections that may be more important
in spin-changing transitions. Thus the length value that is used for
determining the transition probability may be more accurate than
the discrepancy might suggest.

Spectrum calculations have been computed for Be-like to
Ne-like sequences [23] and Na-like to Ar-like are in progress.

4. Forbidden transitions

All examples so far have been for E1 transitions, but the forbidden
E2 and M1 transitions are important in astrophysical studies and
in night sky spectra. The decay of the 2p3 2Do

3/2,5/2 levels to
the ground state has been observed in experimental data from
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Table IV. Transition probabilities for decay from 2p3 2Do
5/2,3/2

levels of Nitrogen compared with observation.

J Aki (E2) Aki (M1) A (Total) A(J = 5/2)/A(J = 3/2)

MCHF: 1984 [25]
5/2 5.158 0.912 6.07
3/2 3.365 14.84 18.21 0.333

MCHF: 2003 [23]
5/2 6.595 0.971 7.566
3/2 4.341 15.951 20.292 0.373

Experiment: 2003 [24] 0.370

Night Sky spectra obtained using the Keck I High Resolution
Spectrograph [24]. This decay, via a combination of E2 and
M1 transitions, had been computed by Godefroid and Froese
Fischer [25] in 1984 with some concern that some relativistic
corrections to the length form of the transition operator might
be important in the case of this half-filled shell system. Table IV
shows that the present, more highly correlated wave functions
provide ratios of total decay rates, Aki(E2) + Aki(M1), that are in
excellent agreement with intensities observed in night sky spectra.
Thus any neglected relativistic terms are not of significance in this
case.

5. Multiconfiguration Dirac-Hartree-Fock methods

For the light elements discussed here, the Breit-Pauli approx-
imation is adequate but for heavy atoms or highly ionized
systems, the multi-configuration Dirac-Hartree-Fock (MCDHF)
theory is preferable. The calculations are more demanding but
with increases in computer speed, may become quite feasible.
Surprisingly, a recent study of Ar I has suggested that even for
this neutral atom, MCDHF may be preferable.

The resonance transitions, 3s33p6 1S0 – 3p54s 1,3Po
1 have a long

history going back as far as 1958. (An extensive list of references
to experimental and theoretical data can be found in Ref. [26] and
Ref. [27]). In table V, we analyze recent theoretical values and
experimental data for these transitions more closely. In addition to
f -values, we look also at the ratio of the f -values for the allowed
and spin-forbidden transitions. It appears that experiment can
determine this ratio more accurately than the f -values themselves.
For the upper levels, we also compare with observed gJ factors
which depend largely on the term composition of a level. Spectrum
calculations for Ar I have been performed in the Breit-Pauli
approximation where expansions were obtained by SD excitations
from a multi-reference set [28]. For intercombination lines, there
are a number of accuracy indicators. In addition to the excitation
energy, there is the energy separation between the 1Po

1 and 3Po
1

levels which determines the extent of the mixing. It was 1617 cm−1

in our ab initio Breit-Pauli calculation and adjusted to 1638 cm−1

when diagonal term energy corrections were applied. Another
is the spread of the 3Po multiplet which was 1305.40 cm−1

(not affected by adjusting) compared to 1413.91 cm−1 for the
observed. This suggests that the relativistic effect was not large
enough, and that the mixing of the 1Po

1 and 3Po
1 terms was

too small. This is confirmed by the gJ factor that is too large
for 3P1 and too small for 1P1. We therefore undertook also
an MCDHF calculation for these transitions. Expansions were
obtained through SD excitations 3s23p6 and 3s23p54s for odd
and even states, respectively, for n = 3, 4, 5. For the odd levels,

Table V. A detailed comparison of 3p6 1S0 –
3p54s 1,3Po

1 with recent theory and experiment.

Energies gJ

Method 3Po
1

1Po
1 diff 3Po

1
1Po

1

Obs. [22] 93751 95400 1649 1.404 1.102
BP (present) 93346 94963 1617 1.416 1.085
MCDHF a) 92811 94407 1596 1.400 1.101
MCDHF b) 93438 95089 1606 1.402 1.098
RCI [27] 94526 96238 1712
CI + RMBPT [29] 92595 95307 1712

f -values

Source 3Po
1

1Po
1 Ratio

Experiment
Federman et al. [30] 0.064 0.257 4.01
Chan et al. [34] 0.0662 (33) 0.265 (13) 4.00
Ligtenberg et al. [26] 0.0616 (21) 0.2297 (93) 3.73
Wu et al. [32] 0.0676 (40) 0.2590 (150) 3.83
Gibson & Risley [33] 0.0580 (17) 0.2214 (68) 3.82
Theory
BP (fine tuned) 0.0619 0.2662 4.30
MCDHF a) 0.0570 0.221 3.87
MCDHF b) 0.0562 0.226 4.02
RCI [27] 0.0627 0.248 3.69
CI + RMBPT [29] 0.0629 0.254 4.03

calculation a) proceeded with the same scheme also for n = 6, but
b) added core-polarization that emphasizes the outer region of the
wave function important in transition calculations. The results
are reported in table V and compared with experiment, first for
energies and then for f -values. The Breit-Pauli (BP) energy is for
the ab initio energy. Comparing with MCDHF, the Relativistic
Configuration Interaction (RCI) performed by Avgoustoglou and
Beck [27], and the most recent Configuration Interaction and
Relativistic Many-Body Perturbation Theory (CI + RMBPT) by
Savukov [29], the MCDHF b) energies are the best with the present
Breit-Pauli (BP) a close second but the the computed gJ for the
latter are not in good agreement with observed.

In the study of f -values, Federman et al. [30] measured
the f -value for the allowed transition but used semi-empirical
methods for estimating the value for the intercombination line
and noted that the ratio of allowed to forbidden was about
4.0. Since then, there have been several accurate experimental
measurements, and though the absolute values for their f -values
differ, the ratios are considerably more constant, generally in the
range of 3.8–4.0.

If the Breit Pauli f -values are corrected also for the their
spread (as suggested by Hibbert in a process referred to as
“fine-tuning” [31]) we get the values in the table, with a ratio
of 4.30. The MCDHF ratios are in close agreement with the
experimentally determined one, whereas the RCI value is too low
and the CI + RMBPT one is too high. In addition, the MCDHF
f -values are also in close agreement with the experimental values
of Gibson and Risley. The considerable difference in the present
Breit-Pauli and MCDHF f -values for the allowed transition,
suggests relativistic effects were not captured accurately by the
Breit-Pauli approximation. But there still is significant difference
with the other relativistic theories. Thus further study is needed.

The heaviest element for which transition probabilities have
been calculated is Lr (Z = 103). The MCDHF calculation
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confirmed that the ground state was [Rn]5f147s27p 2Po
1/2 [35].

The transition to [Rn]5f147s26d 2Do
3/2 required wave function

expansions of more than 330,000 CSFs. Unlike light elements,
where core correlation can usually be neglected, in Lr it was
found to be of extreme importance, affecting the oscillator strength
by a factor of two. In the homologous Lu (Z = 71), the ground
state is [Xe]4f157s25d 2D3/2 and the methods used reproduced
the observed transitions energy to within 126 cm−1. The effect
of correlation in the core affected the oscillator strength by a
factor of 3. There are many heavy elements where correlation
is still an unexplored territory and this study suggests there is
much more to be learned and experimental data will be extremely
valuable.
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