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Background: The current pilot study was designed to examine the association between
hippocampal γ-aminobutyric acid (GABA) concentration and episodic memory in older
individuals, as well as the impact of two major risk factors for Alzheimer’s disease
(AD)—female sex and Apolipoprotein ε4 (ApoE ε4) genotype—on this relationship.

Methods: Twenty healthy, community-dwelling individuals aged 50–71 (11 women) took
part in the study. Episodic memory was evaluated using a Directed Forgetting task,
and GABA+ was measured in the right hippocampus using a Mescher-Garwood point-
resolved magnetic resonance spectroscopy (MRS) sequence. Multiple linear regression
models were used to quantify the relationship between episodic memory, GABA+, ApoE
ε4, and sex, controlling for age and education.

Results: While GABA+ did not interact with ApoE ε4 carrier status to influence episodic
memory (p = 0.757), the relationship between GABA+ and episodic memory was
moderated by sex: lower GABA+ predicted worse memory in women such that, for each
standard deviation decrease in GABA+ concentration, memory scores were reduced by
11% (p = 0.001).

Conclusions: This pilot study suggests that sex, but not ApoE ε4 genotype, moderates
the relationship between hippocampal GABA+ and episodic memory, such that women
with lower GABA+ concentration show worse memory performance. These findings,
which must be interpreted with caution given the small sample size, may serve as
a starting point for larger studies using multimodal neuroimaging to understand the
contributions of GABA metabolism to age-related memory decline.

Keywords: episodic memory, γ-aminobutyric acid, GABA, Alzheimer’s disease, sex, apolipoprotein ε4

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 695416

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2021.695416
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2021.695416&domain=pdf&date_stamp=2021-08-26
https://creativecommons.org/licenses/by/4.0/
mailto:teich@usc.edu
https://doi.org/10.3389/fnbeh.2021.695416
https://www.frontiersin.org/articles/10.3389/fnbeh.2021.695416/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Jiménez-Balado et al. GABA, Sex and Memory in Aging

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder whose hallmark cognitive symptom is episodic memory
loss (Tierney et al., 1996). AD is the leading cause of dementia in
the elderly, and disproportionately affects women (Miech et al.,
2002; Bacigalupo et al., 2018; Dubal, 2020). Despite decades of
research investigating β amyloid (Aβ) as the trigger for a cascade
of neuropathophysiological events that cause AD dementia
(Hardy and Higgins, 1992), the failure of several high-profile
late-stage clinical trials targeting Aβ clearance has highlighted
the urgent need to explore alternative causal mechanisms for
some key aspects of AD pathophysiology (Cummings et al.,
2020). While the cholinergic and glutamatergic systems are
known to be affected in AD (Hampel et al., 2018; Findley
et al., 2019), the gamma-aminobutyric acidergic (GABAergic)
system has received less attention (Pike and Cotman, 1993).
However, animal models have shown that GABA plays a
critical role in long-term memory formation by synchronizing
pyramidal neuron activity (Paulsen and Moser, 1998; Lucas
and Clem, 2018) and by preventing hyperactivity in the
hippocampus (Najm et al., 2019), a brain structure critical for
episodic memory formation and retrieval (Nyberg et al., 1996;
Schacter et al., 1996). A study by Li et al. (2021) recently
showed, using a 5XFAD AD-mouse model, that hyperactivity
of pyramidal neurons in the CA1 field of the hippocampus
was driven by GABAA receptor-mediated inhibitory synaptic
decline, preceded Aβ-related pathology, was accompanied by
cognitive impairments in an episodic-like memory task, and
could be reversed via administration of a GABAA receptor
agonist (Li et al., 2021). In humans, electrophysiological
hyperactivity in the hippocampus—a brain structure that
undergoes early and significant morphologic changes in AD
(Putcha et al., 2011)—presages episodic memory decline in
individuals at-risk for AD (Dickerson et al., 2005; Hämäläinen
et al., 2007; Sperling et al., 2010; Yassa et al., 2010). Levetiracetam
(Keppra), an anti-epileptic drug thought to enhance the function
of GABA indirectly and to target hyperexcitability, reduces
hippocampal hyperactivity, as indicated by decreased blood
oxygenation level-dependent (BOLD) activation measured via
functional magnetic resonance imaging (fMRI). Levetiracetam
also mitigates memory impairment in patients with amnestic
mild cognitive impairment (Bakker et al., 2012, 2015). Together,
these findings suggest that GABAergic dysfunction plays a key
role in the early hippocampal hyperactivity that is associated
with episodic memory impairments in people at risk for, and
with, AD.

The prevalence of AD is greater in women than inmen (Miech
et al., 2002; Bacigalupo et al., 2018; Dubal, 2020). This higher
rate may reflect the fact that women typically live longer than
men (Mielke, 2018), and/or a sex dimorphism involving either
organizational effects that occur during development (Carroll
et al., 2010; Luo et al., 2020) or activation effects occurring
in mid-to-late life, most notably in the form of age-related
estrogen reductions (Pike, 2017; Dubal, 2020). Estradiol (E2),
the primary bioactive estrogen in women, increases spontaneous
GABA release and increases the expression of GABAA receptors

(Herbison et al., 1990; Herbison and Fénelon, 1995). Along with
the decline in E2 levels post-menopause, GABA levels (at least in
the anterior cingulate cortex) have been reported as significantly
lower than pre-menopausal ones (Wang et al., 2019). Pathology
studies in humans have shown lower expression of GABAA
α1, α2, α5, β3 receptor subunits on the membranes of brain
neurons in healthy older females in regions like the superior
temporal gyrus (Pandya et al., 2019). Furthermore, in vivo studies
of the frontal cortex suggest that there are stronger negative
correlations betweenGABA levels and age in women than inmen
(Gao et al., 2013).

The Apolipoprotein ε4 allele (ApoE ε4) is the strongest
common genetic risk factor for late-onset AD, being associated
with both higher risk and a markedly earlier mean age of
AD onset (Corder et al., 1993; Cacabelos, 2003). Several
studies comparing cognitively-normal ε4 carriers to non-carriers
reported memory-related electrophysiological hyperactivity in
the hippocampus and entorhinal cortex (Bondi et al., 2005;
Dickerson et al., 2005; Filippini et al., 2009; Sperling et al.,
2010). In vivo animal studies have shown that learning
and memory losses can be rescued through the deletion of
ApoE ε4 in GABAergic interneurons (Knoferle et al., 2014)
and that GABA-expressing interneurons in the hippocampus
are selectively vulnerable to ApoE ε4-mediated neurotoxicity,
including decreases in dendritic arborization and spine density
(Jain et al., 2013). Indeed, Najm et al. (2019) recently proposed
that GABAergic interneurons are selectively vulnerable to ApoE
ε4, which may translate into a reduction of phasic and tonic
inhibition that results in hippocampal excitability (Najm et al.,
2019).

Thus, the relation between dysfunction in hippocampal
GABA signaling and age-related memory impairment has been
widely studied using animal models (Ambrad Giovannetti and
Fuhrmann, 2019; Najm et al., 2019), and human studies have
revealed interactions between hippocampal hyperactivity and
memory which may serve as a biomarker for impending AD.
Nevertheless, to our knowledge, no study to date has tested
whether hippocampal GABA is associated with episodic memory
in cognitively healthy older adults, or considered how such a
relationship may be moderated by AD risk factors including
sex or ApoE ε4 genotype. The current pilot study explores
whether ApoE ε4 and/or sex are associated with decreases in
hippocampal GABA concentration and, if so, whether such
decreases predict worse episodic memory performance. Briefly,
participants completed an episodic memory task, and aMescher-
Garwood point-resolved spectroscopy sequence (MEGA-PRESS)
was then used to measure GABA concentration in the right
hippocampus, allowing us to interrogate the effects of GABA
concentration, ApoE ε4, and sex, as well as their interactions,
upon episodic memory.

MATERIALS AND METHODS

Setting and Participants
Healthy older adults were recruited for the study from two
participant cohorts maintained by the Cognitive Neuroscience
Division at Columbia University, the Cognitive Reserve Study,
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and the Reference Ability Neural Network Study. Participants
were recruited to these studies by mail-market procedures
targeting individuals within 10 miles of the Columbia University
Medical Center. Participants were required to be right-handed,
native English speakers with at least a fourth-grade reading level.
As part of these cohort studies, participants were genotyped
for ApoE ε4 and screened for neurological diagnoses and
medication use, as detailed elsewhere (Stern et al., 2014), and
for dementia using the Dementia Rating Scale (Mattis, 1988).
Any participant who scored below 135 was excluded. From
this cohort pool, we recruited participants based on their
ε4 carrier status (ε4+ and ε4-) and sex (male and female), to
obtain a final sample balanced across both variables. Participants
performed a Directed Forgetting memory task (MacLeod, 2012)
and then underwentMRI scans at the New York State Psychiatric
Institute MRI Research Program. Data from 11 women and
nine men aged 50–71 years (y) were included. The median
age of the sample was 61 years (y; range: 54.5 y to 67.8 y).
Ten women self-reported to be postmenopausal. Data on the
11th woman were not available. Twelve participants were ApoE
ε4+ (ε2/ε4 = 1; ε3/ε4 = 10; ε4/ε4 = 1), and eight were ApoE
ε4− (ε3/ε3 = 7; ε2/ε3 = 1). The median education level was
6 (range: 5–7), which corresponds to a bachelor’s degree or
equivalent, according to the International Standard Classification
of Education (ISCE) classification. Written informed consent,
as approved by the Institutional Review Board of the Columbia
University Medical Center, was obtained prior to study
participation.

Directed Forgetting Task
An item-method directed forgetting task was used to assess
episodic memory (MacLeod, 2012). In the study phase of the
task, participants were presented with unrelated, unambiguous
concrete nouns, ranging in length from 3 to 8 letters, one at a
time, for 2,500 ms each. Each word was followed by a 500 ms
delay, and then a memory cue, presented for 1,500 ms, which
indicated whether the preceding word was to be remembered
(TBR) or to be forgotten (TBF) for a later memory test.
Participants were instructed to remember the TBR words for a
later memory test and told that forgetting the TBF words would
help them to remember all of the TBR words. The TBR cue
consisted of four green R’s (for Remember), and the TBF cue
consisted of four red F’s (for Forget). To minimize primacy and
recency effects, six additional buffer trials were presented as the
first and last three trials of the experiment and were not scored.
Trials were separated by 1,000 ms intervals. Following the study
phase, and after a 5-min delay period, memory was tested for
all 36 studied words (18 TBR and 18 TBF), as well as 36 words
that had not been presented during the study phase. Old and new
words were presented in a blocked-randomized design to control
for the time between study and test. During this recognition
phase, each test word was presented on the screen for 20 s, or
until the participant responded. Participants were instructed to
press the Y key on the keyboard (for Yes) if they recognized the
test word as one of the words that had been presented to them,
and to press the N key (for No) if it had not. The current analysis
examined only accuracy for TBR items.

Neuroimaging Protocol
Magnetic Resonance Imaging
MRI data were acquired using a 32-channel head coil on a
3 Tesla MR scanner (Discovery, GE Medical Systems). Two
anatomical images were acquired for the MRS volume of
interest (VOI) placement; the first one was a three-dimensional
(3D) brain volume (BRAVO) T1-weighted sequence (echo time
(TE) = 2,700 ms, repetition time (TR) = 7,156 ms, inversion
time (TI) = 450 ms, 176 slices, 256 × 256 matrix size, slice
thickness = 1 mm, flip angle (FA) = 12◦). The second one
was a two-dimensional (2D) axially-acquired structural T1-
weighted fluid-attenuated inversion recovery (FLAIR) volume
(TE = 26 ms, TR = 2,300 ms, TI = 756 ms, 25 slices,
512 × 512 matrix size, slice thickness = 5 mm, voxel
size = 0.4 mm × 0.4 mm × 5 mm, FA = 111◦). The VOI with
a size of 4 × 2 × 2 cm3 was centered in the right hippocampus
(Figure 1A). 1HMRS data were acquired using a MEGA-PRESS
sequence (Mullins et al., 2014; TE = 68 ms, TR = 1,500 ms,
slice thickness = 20 mm, FA = 90◦, field of view = 512 × 512)
in one acquisition that lasted 768 s. A vendor-provided,
semi-automatic shimming procedure was implemented prior to
spectroscopic acquisition and was supplemented by interactive
manual shimming, resulting in full-width at half-maximum
(FWHM) water linewidths ranging from 9 to 22 Hz (mean line
width = 13± 3.49 Hz).

Anatomical Segmentation
The 3D T1-weighted images were analyzed using FreeSurfer
(v5.1.0) an automated segmentation and cortical parcellation
software package (Fischl et al., 2002). Boundary lines separating
gray matter, white matter, and pial surfaces were visually
inspected. When necessary, to ensure accuracy, manual editing
of voxel label maps was conducted according to the FreeSurfer
manual editing guidelines by a technician blinded to participant
demographics. In the second round of quality control, the
borders of the parcellated cortical and sub-cortical regions were
then overlayed onto the input structural images by a second
technician. The Desikan-Killiany Atlas, which includes 34 gyral-
based cortical regions, was used for cortical parcellation and for
regional identification of clusters (Desikan et al., 2006).

Magnetic Resonance Spectroscopy Quantification
The concentration of resting-state GABA in the right
hippocampus was quantified using the Jet algorithm1 in
MATLAB (Mathworks, MA, USA). This algorithm was used
to preprocess the spectroscopy data by aligning frequency
and phase for ON and OFF spectra, as described previously
(Mikkelsen et al., 2018). Then, we edited the GABA peak
at 3 parts per million (ppm) and co-edited the glutamine +
glutamate (Glx) peak at 3.77 ppm after subtraction of the ON
and OFF spectra, as shown in Figure 1B. Spectral fitting was
performed with a simulated basis-set for metabolites including
GABA, Glx, choline (Cho), creatine (Cr), and n-acetylaspartate
(NAA). Metabolites were quantified based on the area-under-
the-curve (AUC) for each fitted metabolite basis, as illustrated
in Figure 1C. The signal detected with these parameters will

1http://triton.iqfr.csic.es/guide/man/nmrsim/contents.html
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FIGURE 1 | Localized images and representative MR spectra from a 2 × 2 × 4 cm3 voxel manually placed in the right hippocampus of a subject. (A) Axial and
sagittal planes showing the hippocampal voxel, outlined in aqua, from one study participant’s MPRAGE T1-weighted image. (B) Loadings for the GABA edited
difference spectrum. (C) Representative model fitting showing Glx (a combination of glutamate and glutamine) and GABA spectrum peaks, representing the GABA
signal, from the same subject. The blue line represents the actual edited spectrum, whereas the overlaid pink line is the model of best fit. The residual is shown in the
black curve below the modeling plot.

contain contributions from both the macromolecules (MM) and
homocarnosine in addition to GABA (Rothman et al., 1997),
therefore we refer to this signal as GABA+ henceforth. GABA+
concentration was then quantified as a ratio to the reference Cr
metabolite concentration.

Statistics
The proportion of correct TBR responses (items that participants
were told to remember, which they correctly said were
presented), which provides a direct measure of episodic
memory, served as the outcome variable. Predictors of interest
included MRS-measured GABA+ concentration from the right
hippocampus, age, sex, education level (according to the
International ISCE classification), and ApoE ε4 genotype, coded
as a binary variable (either positive or negative). There were no
missing data pertaining to any of these variables.

Univariate analyses were used to assess the association
between GABA+, on the one hand, and age, sex, and ApoE
ε4 variables, on the other hand, using Spearman’s rank
correlation coefficients or Student’s t-tests for continuous or
categorical variables, respectively. Multiple linear regression
models were used to evaluate the relationship between episodic
memory and the predictors of interest. Memory served as the
dependent variable, with GABA+, age, sex, education, and ApoE
ε4 as independent variables. Independent variables were selected
according to a priori hypotheses based on the previous literature
or on univariate analysis results. To facilitate the interpretation of
regression coefficients, GABA concentrations were standardized
into z-scores. As our hypothesis involved ApoE ε4 and sex
effects on GABA+ concentrations, interaction terms for ApoE
ε4 × GABA+ and sex × GABA were included. Additionally,
to avoid overfitting due to the large number of variables and
small sample size, variables were selected via backward stepwise
elimination according to the Akaike information criterion (AIC).
Briefly, the AIC is a metric comparing the goodness of the fit of

two models by selecting the one with the highest likelihood after
penalizing for the number of parameters in the models. A lower
AIC thus corresponds to better goodness of fit. The statistical
assumptions (independence and normality of residuals, presence
of influential cases, and absence ofmulticollinearity) of themodel
obtained through variable selection were verified to confirm that
they had been met.

Overall accuracy on the task was high. To investigate as to
whether the effect of GABA+ (the predictor variable) on memory
was conditioned by the skewed distribution of TBR responses
(the dependent variable), we implemented separate quantile
regression models in men and women. In quantile regression,
instead of fitting a model at the mean of the dependent variable,
the effect of the independent variable is tested across the
distribution of the dependent variable. Hence, coefficients are
calculated at one or more quantiles of the distribution (expressed
as τ), which are set a priori. In our case, we considered deciles
from 10 to 90. This analysis allowed us to observe whether the
correlation between GABA+ and memory remained constant
across the distribution of TBR responses in men and women,
giving robustness to our results. Pairwise comparisons of those
models fitted at different τ were compared using Wald tests to
assess whether the effect of GABA+ varied across the distribution
of TBR responses.

All analyses were conducted using R software (R version
3.6.1, 2019-07-05; © 2019 The R Foundation for Statistical
Computing). For all analyses, α was set at 0.05.

RESULTS

Characteristics of the Sample
There was no significant sex-related difference in the sample’s
age (U(9,11) = 56.5, p = 0.621), educational attainment
(U(9,11) = 62.5, p = 0.318), or in its prevalence of the ApoE ε4 allele
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TABLE 1 | Linear regression models parameters illustrating the relationship
between GABA+ concentration and episodic memory performance.

Variable β(95% CI) t-value p-value

Baseline Model

Age [years] 0.00 (−0.01; 0.01) 0.69 0.501
Education, ISCED −0.01 (−0.07; 0.04) −0.61 0.551
GABA+ level, SD increase 0.11 (0.04; 0.18) 3.21 0.007
ApoE ε4, Positive −0.02 (−0.13; 0.10) −0.32 0.757
Sex, Male 0.12 (0.02; 0.22) 2.72 0.019
GABA+ × ApoE ε4 0.00 (−0.11; 0.11) 0.01 0.990
GABA+ × Sex −0.12 (−0.24; 0.00) −2.17 0.051

Final model

GABA+, SD increase 0.11 (0.05; 0.17) 3.92 0.001
Sex, Male 0.12 (0.04; 0.21) 3.10 0.007
GABA+ × Sex −0.11 (−0.20; −0.03) −2.74 0.015

Linear regression models were constructed using the proportion of correctly recognized
TBR words as the dependent variable, while adjusting for GABA+, age, sex, education,
the presence of the ApoE ε4 allele, and for both the GABA+ level × ApoE ε4 and GABA+
level × sex interactions. The final model displayed was obtained after selecting variables
via backward stepwise elimination. Female sex is the reference category; thus, the main
effect of GABA+ level showed in the final model represents the association between
GABA+ concentration and episodic memory performance in females. The adjusted R2

values were 0.34 and 0.48 for the baseline and final models, respectively. Listed are β
coefficients and their 95% confidence intervals, t-statistics, and p-values.

(χ2
20 = 0.01, p = 0.927). On the other hand, ApoE ε4 carriers

were older [median (interquartile range) = 65.5 y (55.8, 69.0)
y] than non-carriers [57.5 y (53.8, 60.3) y], but did not differ in
educational attainment (U(8,12) = 64.5, p = 0.194).

Relation Between GABA Concentration
and Episodic Memory
The average proportion of correctly recognized TBR words was
high, 0.9± 0.1. This score did not correlate with age (rs18 = 0.32,
p = 0.169) or education level (rs18 = 0.11, p = 0.632). Further,
GABA+was not associated with either age (rs18 = 0.05, p = 0.828),
or ApoE ε4 polymorphism (t(14,5) = 0.26, p = 0.802). However,
overall, women had higher GABA+ concentration than did men
(t(16,9) =−2.67, p = 0.016).

Multiple linear regression models were used to analyze
the relationship between episodic memory and the predictors
of interest (age, education, sex, and ApoE ε4 genotype), the
results of which are shown in Table 1. We did not observe a
main effect of ApoE ε4 [β (95% confidence interval) = −0.02
(−0.13, 0.10), p = 0.757], or a ApoE ε4 × GABA+ interaction
[β = 0.00 (−0.11, 0.11), p = 0.990; see Figure 2A]. We did
observe a main effect of sex, such that, on average, women
had worse memory performance [0.81 (0.75, 0.86)] than men
[0.93 (0.87, 0.99)]. However, this main effect was moderated
by a significant interaction between GABA+ concentration and
sex, such that lower GABA+ concentrations were associated
with worse memory performance in women (Table 1), but
not in men: β = 0.00 (−0.07, 0.06), p = 0.935. As shown in
Figure 2B, in women, for each standard deviation decrease in
GABA+ concentration, the proportion of correct responses on
the memory task decreased by 0.11.

The results of the quantile regression models revealed that
GABA+ was not associated with memory performance in men
in any portion of the TBR accuracy distribution. By contrast,

in women, GABA+ was positively correlated with memory at
all deciles except 20 and 50 (τ 10 = 0.10, t = 2.39, p = 0.040;
τ 20 = 0.20, t = 2.06, p = 0.070; τ 30 = 0.30, t = 2.32, p = 0.045;
τ 40 = 0.40, t = 2.27, p = 0.049; τ 50 = 0.50, t = 0.94, p = 0.370;
τ 60 = 0.60, t = 2.43, p = 0.038; τ 70 = 0.70, t = 2.46, p = 0.036;
τ 80 = 0.80, t = 2.70, p = 0.025; τ 90 = 0.90, t = 3.47, p = 0.007).
As shown in Figure 3, GABA+ related regression coefficients
in women ranged from 0.08 to 0.15. When significant models
were compared by pairs, no significant differences in any
comparison were found, suggesting relative stability of the
GABA+ concentration effect in women and confirming that
these results were not conditioned by a potential ceiling effect
observed in TBR accuracy.

DISCUSSION

To our knowledge, this is the first study to test the relation
between hippocampal GABA+ and episodic memory in
older adults. Contrary to our expectations, ApoE ε4 status
did not moderate the effect of GABA+ concentration on
memory. However, sex did: women with lower GABA+
concentrations showed worse episodic memory compared
to women with higher GABA concentrations and to men,
regardless of the latter’s GABA+ concentration. What
factors might mediate this effect? The female hippocampus
is very responsive to E2. In women, hippocampal volume
increases during the high-estradiol late-follicular phase of
the menstrual cycle (Protopopescu et al., 2008). In animal
models, the dendritic spine density of pyramidal hippocampal
neurons increases during the high-estradiol proestrous phase
(Woolley et al., 1990), resulting from decreased GABAergic
inhibition in the hippocampus (Murphy et al., 1998). The
changes in the hippocampal GABA system from pre- to post-
menopause—dynamic fluctuations across the menstrual cycle
(Protopopescu et al., 2008) to static low levels—may result in
static hyperexcitability of hippocampal neurons and to increased
risk of pathophysiology.

Other potential overlapping mediating factors are depression
and cognitive impairment. While the results are not always
consistent, both case-control and cohort studies have reported
that a history of depression is a risk factor for cognitive
impairment (Kessler, 2003; Ownby et al., 2006), and increases
AD risk (Ownby et al., 2006). Women have a higher
prevalence of depression (Pehrson and Sanchez, 2015; Flores-
Ramos et al., 2017), with symptom risk peaking during major
reproductive events (e.g., perimenopausal transition) when
fluctuations in sex steroid hormone levels are high (Soares
and Zitek, 2008). These transitional phases are associated
with dysregulation of the hypothalamic-pituitary-gonadal axis
function (Schweizer-Schubert et al., 2021), which is regulated
by GABAergic transmission (Flores-Ramos et al., 2017).
Interestingly, individuals with major depression have reduced
numbers of somatostatin-expressing neurons (a population of
GABAergic interneurons playing a key role in memory), and
this reduction is exacerbated in women (Fee et al., 2017).
Unfortunately, as this was a pilot study, we did not acquire
sex hormone levels or screen for depressive symptoms, and
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FIGURE 2 | Association between episodic memory and GABA+ concentration by sex. GABA+ concentration was standardized into z-scores. Lines show the
relation between GABA+ levels and episodic memory performance by (A) ApoE ε4 and (B) Sex. Linear regression models were constructed using the proportion of
the TBR words (those words that participants were instructed to remember) as the dependent variable, and while accounting for the interactions of ApoE
ε4 × GABA+ level and of sex × GABA+ level in separate models. Values represent regression coefficients β, their 95% confidence intervals (CIs), and the p-values of
the standardized GABA main effects.

we were therefore unable directly to test hypotheses on the
role of these factors in the relationships between GABA
concentrations, episodic memory, and sex that we quantified in
this study.

Recently, Schmitz et al. (2017) reported an association
between MRS-measured hippocampal GABA+ and the
mnemonic control over unwanted thoughts (Schmitz et al.,
2017). However, this study included only younger adults (Mean
age = 24.7 year). A study by Porges et al. (2017) did investigate
the relation between GABA+ and cognitive decline in older
individuals (Porges et al., 2017). However, the neuropsychologic
measure used in their study (theMontreal Cognitive Assessment,
MoCA) was broad and cognitively non-specific, and GABA
concentration was assayed in the prefrontal cortex, not in the
hippocampus.

Correlations between GABA+ in other brain regions and
other cognitive functions have been reported. Riese et al. (2015),
for example, reported better performance in a word list task
for older individuals with greater GABA+ concentration in
the posterior cingulate cortex (Riese et al., 2015). Likewise,
several studies reported that GABA+ concentrations in the dorsal
anterior cingulate and in the occipital cortex are associated
with measures of executive and visuo-perceptual functions,
respectively (Marenco et al., 2018; Simmonite et al., 2019).
Furthermore, Piras et al. (2019, 2020) found cerebral GABA
levels to be associated with performance in phonemic fluency
and in the Stroop Color-Word Test, a measure of response
inhibition (Piras et al., 2019, 2020). Thus, it is possible
that the relation between GABA+ levels and cognition is
not specific to memory. However, the data presented here,
while drawn from a small sample, support findings from

FIGURE 3 | Quantile regression plot of GABA+ statistical effect on memory
performance at each decile of TBR accuracy, by sex. The variation of GABA+
regression β coefficients (y axis) obtained from quantile regression models is
represented at each decile (x axis). Colors represent males (black) and
females (red). The red dashed line is set at 0, and thus error bars not crossing
the red dashed line represent statistically significant associations.

animal models, which have provided strong evidence for the
specificity of the age-related, GABA-mediated hippocampal-
episodic memory association.

In summary, the data from this pilot study revealed an
association between GABA+ levels and episodic memory in
women but not men, such that lower levels of GABA+
were associated with worse behavioral performance. Further
multimodal neuroimaging studies considering structural, MRS,
and fMRI data are needed to determine whether these
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GABAergic changes are also associated with hippocampal
hyperactivity (Jiménez-Balado and Eich, 2021). Moreover,
longitudinal studies with larger samples that consider depression
and hormonal balances will help to replicate the findings
presented here and test whether GABA-related dysregulation
predicts sex-specific incident MCI or dementia risk. Further
studies focusing on these questions would be of great interest
in confirming the contribution of GABA to age–related
cognitive impairment, and clarifying the role of sex in
these changes.

LIMITATIONS

This pilot study is preliminary and, as such, has several
notable limitations that necessitate the results to be interpreted
with caution. First, the sample size was small, which limited
statistical power, especially for the critical analyses of group
comparisons. Second, we collected neither sex hormone levels
(estradiol, progesterone, and testosterone) nor current levels or
history of depression. These are important avenues of future
inquiry, as they may provide insight into the mechanism
driving the sex-specific effects found, and future studies should
directly test the role of these factors in the relationship
between GABA+ concentration and episodic memory in
women. Third, while it is not possible to determine from
the 1H MRS estimate where the GABA signal originates,
as the measurement reflects a combination of synaptic,
intracellular, and extrasynaptic GABA from all types of
GABAergic interneurons in our right hippocampal region of
interest (Maddock and Buonocore, 2012), the findings reported
by Li et al. (2021) suggest that hippocampal CA1 GABAA
postsynaptic pyramidal neuron receptors might be a likely
source. Future studies using PET imaging could provide clarity
on the precise coupling of the source of the GABA signal
and its association with episodic memory deficits. Moreover,
fMRI measurements will additionally help to ensure that
the effect of GABA reduction or dysfunctional coupling on
cognitive impairment is mediated by hippocampal hyperactivity;
confirming the main hypothesis of this manuscript. Finally,
our sample may not be representative of typical older adults,
according to both their self-reported levels of education, and
to their objective (high) performance on the memory task.
On the other hand, hippocampal volume in our sample
(µ ± σ = 3.84 ± 0.5 cm3) was on par with recently published
normative data acquired from a large sample (N ' 20,000)
of clinically healthy older adults (mean age: 62.95 ± 7.48 y;
hippocampal volume '3.86 ± 0.4 cm3), and these results

were similar across sex. Specifically, the women in our sample
had average hippocampal volumes of 3.64 ± 0.47 cm3, vs.
3.77 ± 0.37 cm3 in the normative sample. Men in our sample
had average hippocampal volumes of 4.12 ± 0.35 cm3, vs.
3.97 ± 0.43 cm3 in the normative sample, which allays some
concern over how representative the participants in our sample
are (Nobis et al., 2019). Future studies that include larger
samples, use multimodal imaging methods, and also measure
depression and hormone levels would help to both remedy these
limitations and to facilitate generalization of the results to the
general population.
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