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ABSTRACT

Aging is associated with declines in autonomic nervous system (ANS) function, impaired neurovascular coupling, and 
diminished cerebrovascular responsiveness—factors that may contribute to cognitive decline and neurodegenerative 
diseases. Understanding how aging alters the integration of physiological signals in the brain is crucial for identifying 
potential interventions to promote brain health. This study examines age-related differences in coupling between low-
frequency cardiac rate and respiratory volume fluctuations and the blood oxygenation level-dependent (BOLD) signal, 
using two independent resting-state fMRI datasets with concurrent physiological recordings from younger and older 
adults. Our findings reveal significant age-related reductions in the percent variance of the BOLD signal explained by 
heart rate (HR), respiratory variation (RV), and end-tidal CO2, particularly in regions involved in autonomic regulation, 
including the orbitofrontal cortex, anterior cingulate cortex, insula, basal ganglia, and white matter. Cross-correlation 
analysis also revealed that younger adults exhibited stronger HR–BOLD coupling in white matter, as well as a more 
rapid BOLD response to RV and CO2 in gray matter. Additionally, we investigated the effects of heart rate variability 
biofeedback (HRV-BF) training, a non-invasive intervention designed to modulate heart rate oscillations. The interven-
tion modulated physiological–BOLD coupling in a manner dependent on both age and training condition: older adults 
who underwent HRV-BF to enhance HR oscillations exhibited a shift toward younger-like HR–BOLD coupling pat-
terns. These findings suggest that HRV-BF may help mitigate age-related declines in autonomic or cerebrovascular 
function. Overall, this study underscores the role of physiological dynamics in brain aging and highlights the impor-
tance of considering autonomic function when interpreting BOLD signals. By demonstrating that HRV-BF can modu-
late physiological–BOLD interactions, our findings suggest a potential pathway for enhancing cerebrovascular function 
and preserving brain health across the lifespan.
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1. INTRODUCTION

The autonomic nervous system (ANS) is a sub-branch of 
the peripheral nervous system that is responsible for reg-
ulating physiological functions of the body, including 
heart rate and respiration. It is well documented, how-
ever, that ANS health declines with age (Mather, 2024; 
Olivieri et al., 2024; Takla et al., 2023; Thayer et al., 2010). 
For example, aging is associated with decreased heart 
rate variability (HRV), which reflects the natural ability of 
the brain to modulate oscillations in heart rate (Britton 
et  al., 2007; Jandackova et  al., 2016; Mather, 2024; 
Reardon & Malik, 1996; Thayer et al., 2010; Zulfiqar et al., 
2010). As the ANS controls cardiovascular responses, it 
directly influences cerebral blood flow and the dynamics 
of neurovascular coupling, which are vital for maintaining 
a healthy level of blood flow to the brain to sustain cogni-
tive functions (Goadsby, 2013; Koep et al., 2022; Mankoo 
et al., 2023). With aging, the decline in ANS health can 
compromise the ability of the brain to regulate cerebral 
blood flow efficiently (Lu et  al., 2011). This diminished 
neural–vascular regulation, exacerbated by age-related 
structural changes in the vasculature, has been linked to 
cognitive decline and diseases such as Alzheimer’s and 
stroke (Han et al., 2021; Mankoo et al., 2023; Sweeney 
et al., 2019).

Functional magnetic resonance imaging (fMRI) is a 
non-invasive technique for measuring brain activity by 
detecting changes in local blood oxygenation levels. 
Since fMRI relies on the hemodynamic response, the 
blood oxygenation level-dependent (BOLD) signal is 
affected by low-frequency fluctuations in peripheral 
physiological processes, including natural variations in 
respiratory variation (RV) and heart rate (HR) (Murphy 
et al., 2013; Wise et al., 2004). In fMRI studies, it is com-
mon to regress out RV and HR from the BOLD signal, as 
these effects introduce non-neuronal fluctuations that 
may confound inferences about neural activity. However, 
several new avenues of research have indicated that the 
physiological component of the fMRI BOLD signal may 
provide valuable information related to ANS and cerebro-
vascular health (Bright et al., 2020; Donahue et al., 2016; 
Makedonov et  al., 2013; Mather & Thayer, 2018; Yang 
et al., 2022). For instance, areas of the brain associated 
with regulating naturalistic breathing rhythms were found 
to exhibit strong BOLD–RV coupling (Chen et al., 2020), 
and regions demonstrating high BOLD–HR coupling were 
found in regions of high vessel density (Chen et al., 2020).

Due to the deterioration of ANS health with age, the 
effect of age on physiological–BOLD coupling is of inter-
est. The joint dynamics of physiological signals (e.g., HR 
and RV) and the BOLD signal may shed light on age-
related changes in autonomic and cerebrovascular 

health, potentially uncovering early indicators of neuro-
degenerative or cardiovascular conditions. One study 
demonstrated that aging was associated with lower lev-
els of resting-state BOLD variability and that cardiovas-
cular health moderated this effect (Tsvetanov et al., 2021). 
Another study demonstrated that the hemodynamic 
response was smaller and slower in older adults than in 
younger adults when performing audio/visual sensorimo-
tor tasks (West et al., 2019). Further, animal models have 
revealed that aging may reduce neurovascular coupling 
due to structural changes in neurovasculature, such as 
vascular rarefaction and endothelial dysfunction, sug-
gesting that the relationship between BOLD and physio-
logical signals may be an indicator of aging (Yabluchanskiy 
et al., 2021). However, it is presently unclear how the spa-
tiotemporal association of BOLD fMRI signals with low-
frequency breathing and heart rate variability changes 
with aging.

Here, we identify age-related differences in the propaga-
tion of spontaneous heart rate and respiratory fluctuations 
into resting-state BOLD signals. Differences between older 
and younger adults prominently included brain regions that 
have been implicated in autonomic regulation. Additionally, 
we demonstrate that HRV biofeedback training, a non-
invasive paced breathing technique to modulate HR 
oscillations, alters the dynamics of BOLD–physiological 
coupling in older adults to more closely resemble patterns 
observed in younger adults. Overall, this research aims to 
advance our understanding of how physiological signals 
manifest within the spatial and temporal patterns of the 
BOLD response, while also investigating how both the 
aging process and HRV biofeedback training may modu-
late these underlying dynamics.

2. METHODS

2.1. Datasets

We included resting-state fMRI scans with high-quality 
physiological data from 399 participants in the Nathan 
Kline Institute (NKI) Rockland sample (Nooner et  al., 
2012). Data were examined from a younger (range: 19–
36, mean: 25.98, std: 4.72, n = 144) and an older (range: 
50–85, mean: 63.00, std: 8.28, n = 255) group. The NKI 
institutional review board approved data collection, and 
participants gave informed consent. An MPRAGE 
sequence was used to retrieve an anatomical image for 
each subject (TR/TE = 1900/2.52 ms; flip angle = 9°; slice 
thickness  =  1.0  mm; number of slices  =  192; matrix  = 
256 × 256; field of view = 250 mm). Resting-state scans 
were acquired using an EPI sequence (TR  =  1400  ms; 
duration 9.4  min; 404 volumes; voxel size  = 2.0  x 
2.0 x 2.0 mm; flip angle = 65°; field of view= 224 mm). 
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During the scan, physiological data sampled at 62.5 Hz 
were also collected from participants. Cardiac data were 
collected via photoplethysmogram (PPG) and respiration 
was measured using a respiration belt.

We also included resting-state fMRI scans with high-
quality physiological data from 110 participants in the 
Heart Rate Variability and Emotional Regulation (HRV-ER) 
dataset (Yoo et al., 2023), who were either in a younger 
(range: 18–30, mean: 22.19, std: 2.86, n = 59) or an older 
(range: 55–80, mean: 64.69, std: 6.36, n  =  51) group. 
Resting-state fMRI was acquired using a multi-echo-
planar imaging sequence (TR  =  2.4  seconds; TE 
18/35/53 ms; slice thickness = 3.0 mm; flip angle = 75°; 
field of view = 240 mm; voxel size = 3.0 × 3.0 × 3.0 mm; 
175 volumes; duration 7 min). In-scan cardiac data were 
collected using PPG, CO2 levels were collected using 
capnography, and respiration was measured using a 
breathing belt. Physiological data were initially collected 
at 10 kHz but was downsampled to 1 kHz. Scans were 
collected from all participants both before and after a 
5-week HRV biofeedback training intervention.

During the 5-week HRV biofeedback training, half of 
the participants completed daily sessions in which they 
did slow paced breathing while receiving biofeedback to 
increase their heart rate oscillations (Osc+), while the 
other half received biofeedback to decrease heart rate 
oscillations (Osc−). In weekly laboratory sessions, partic-
ipants in the Osc+ condition practiced breathing at differ-
ent paces to identify their resonance frequency, aiming to 
maximize heart rate oscillations using biofeedback from 
the emWave Pro software. In the Osc− condition, partici-
pants used their own strategies to reduce heart rate 
oscillations, receiving feedback via a “calmness score,” 
which increased as their heart rate oscillations decreased. 
In between the weekly laboratory sessions, training was 
performed twice daily at home for 20 minutes each using 
the breathing pace (Osc+) or strategy (Osc−) identified as 
most effective for increasing (Osc+) or reducing (Osc−) 
heart rate oscillations. Of the 110 participants for which 
baseline resting-state fMRI scans and in-scanner physio-
logical recordings were obtained, 78 participants (20 
younger Osc+, 21 younger Osc−, 19 older Osc+, 18 older 
Osc−) also had the fMRI scans and physiological record-
ings data after the 5-week HRV biofeedback training.

Although the NKI dataset contains data from adults 
between the ages of 37 to 49 years, our decision to omit 
the 37- to 49-year age range was driven by study design 
rather than power considerations. The HRV-ER interven-
tion dataset, to which we directly compare the NKI 
results, contains only younger (18–30  years) and older 
(55–80  years) participants; aligning the NKI bins with 
those groups allows a like-for-like validation across inde-
pendent cohorts and focuses on the life-span segments 

where differences in autonomic and vascular characteris-
tics are most pronounced.

2.2. Imaging data preprocessing

For anatomical data in both NKI and HRV-ER datasets, 
T1-weighted images were skull-stripped using FSL’s 
Brain Extraction Tool (BET), followed by intensity non-
uniformity correction with AFNI’s 3dUnifize.

In the NKI dataset, motion correction of the fMRI data 
was carried out using FSL mcflirt. ICA FIX (Griffanti et al., 
2014) was additionally used to further correct for motion 
artifacts including high-frequency physiologically cou-
pled motion artifacts and other MRI acquisition-related 
artifacts. ICA FIX functions as an independent compo-
nent classifier, and was trained using data from 25 sub-
jects with a balanced age distribution from the NKI 
dataset. For training, each independent component was 
manually labeled as either “noise” or “not noise,” enabling 
ICA FIX to identify and remove noise components in the 
remainder of the dataset.

In the HRV-ER dataset, fMRI data underwent motion 
correction using AFNI’s 3dvolreg. Motion correction was 
applied to the second echo, with the resulting motion 
parameters used to align the first and third echoes via 
3dAllineate. Slice timing correction was performed with 
AFNI’s 3dTshift. Multi-echo fMRI data were denoised using 
tedana, which applied multi-echo independent compo-
nent analysis (ME-ICA) to distinguish BOLD components 
from non-BOLD artifacts (Kundu et al., 2012, 2017).

In both datasets, spatial normalization of functional 
data to MNI space was achieved by first aligning func-
tional volumes to the T1-weighted anatomical images 
with FSL’s epi_reg, followed by ANTs-based registra-
tion to the MNI152 2 mm template. The ANTs routine 
antsApplyTransforms was used to apply this nonlinear 
transformation to the T1-registered functional data. 
Smoothed functional images (3 mm FWHM) were gen-
erated using AFNI’s 3dmerge. Nuisance regression, 
including fourth-order polynomial detrending, was per-
formed with 3dDetrend, followed by the addition of the 
mean signal using 3dTstat.

2.3. Physiological data preprocessing

Physiological data, including heart rate (HR), respiratory 
variation (RV), and end-tidal CO

2, were processed to 
create fMRI regressors aligned with the fMRI time series. 
To calculate HR, the raw photoplethysmography (PPG) 
signal was bandpass filtered between 0.5 and 2  Hz 
using a second-order Butterworth filter to enhance 
heartbeat clarity for peak detection. Peaks were identi-
fied using a minimum peak height threshold of 5% of 
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the interquartile range, and inter-beat intervals (IBI) were 
calculated. After visual inspection of the IBI time series 
for artifacts (e.g., due to poor peak detection), we inter-
polated over any instances where artifacts occurred. 
Heart rate was calculated as the inverse of the median 
inter-beat interval (IBI), using 6-second sliding windows 
centered at each fMRI TR. Metrics of heart rate variabil-
ity (HRV), such as RMSSD, high-frequency (HF), and 
low-frequency (LF) power, were also derived from the 
IBI. The HF power band was defined between 0.15 and 
0.4  Hz, and the LF power band was defined between 
0.04 and 0.15 Hz (Burr, 2007).

RV was calculated as the temporal standard deviation 
of the raw respiration waveform within 6-second win-
dows centered at each TR. To account for individual dif-
ferences in torso size, the RV signal was normalized 
between -1 and 1 for each participant. RV normalization 
was performed by first determining lower and upper 
bounds at the 1.45th and 98.55th percentiles using a 
histogram-based approach. The mean RV within these 
bounds was then subtracted to center the data approxi-
mately around zero, and this mean was also subtracted 
from the lower and upper bounds. Finally, positive and 
negative values were divided by their respective adjusted 
upper or lower bounds, resulting in a normalized range 
approximately between -1 and 1.

The HRV-ER dataset also included capnography 
recordings for measuring CO2. To account for time delays 
in the capnography signal, it was time shifted to optimize 
alignment with the respiration waveform, reflecting the 
expected inverse correlation between the two signals. 
End-tidal CO2 values were then extracted from the re-
aligned capnography peaks and resampled to match the 
fMRI TR. For both datasets, breathing rate was also cal-
culated in breaths per minute using the NeuroKit2 pack-
age in Python (Makowski et al., 2021).

2.4. Modeling relationships between BOLD and 
physiological signals

The physiological data were used to create regressors for 
modeling the impact of resting-state physiological fluctu-
ations on BOLD signal variance. To account for respira-
tory effects, we convolved the RV signal with the primary 
Respiratory Response Function (RRF) (Birn et al., 2008), 
as well as temporal and dispersive derivative basis func-
tions of the RRF. This allowed us to model regional differ-
ences in the propagation of RV effects on the BOLD 
signal (Chen et al., 2020). Similarly, heart rate (HR) was 
convolved with the primary Cardiac Response Function 
(CRF) (Chang et al., 2009) and its temporal and spatial 
derivative basis functions. The RRF and CRF model the 
physiological impulse responses, capturing how RV and 

HR fluctuations influence the BOLD signal. Figure 1 pres-
ents a schematic overview of the model.

In the HRV-ER dataset, we also modeled the impact of 
end-tidal CO2 on the BOLD signal by convolving it with a 
previously parameterized double-gamma end-tidal CO2

response function (Golestani et al., 2015), and its tempo-
ral derivative. The Golestani et al. (2015) basis functions 
were chosen to model end-tidal CO2 response over other 
commonly used response functions for modeling the 
resting-state BOLD response to CO2, such as the canon-
ical hemodynamic response function (Yao et al., 2021), 
due to its ability to better capture the delayed response 
of the BOLD signal in older adults to CO2 compared with 
younger adults, which is detailed more in Section 3.3 and 
Supplementary Figure 1.

For each dataset, we fitted three separate linear mod-
els to assess the effect of physiological activity on the 
BOLD signal: (1) a model with both cardiac and respira-
tion regressors, (2) a model with only cardiac regressors, 
and (3) a model with only respiration regressors. These 
models provided the BOLD signal variance explained by 
both physiological factors combined, cardiac activity 
alone, and respiration alone, respectively, for each voxel 
across all participants. Average response function pro-
files for both older and younger adults using the joint car-
diac and respiration model are shown in Supplementary 
Figure  2. In practice, shared variance between cardiac 
and respiratory fluctuations may be captured non-
specifically in both models (Shmueli et al., 2007). There-
fore, the explained variance in models (2) and (3) may 
include overlapping components that are not orthogonal 
to each other or to the joint model (1).

Since the signal quality for respiration belt data col-
lected in the HRV-ER dataset was deemed poor after 
visual inspection, we used end-tidal CO2 as the measure 
of respiration in this dataset. In the NKI dataset, RV was 
used as the measure of respiration. Both datasets used 
heart rate as the primary cardiac measure. To determine 
the relative contribution of cardiac and respiratory activity 
to the BOLD signal, we calculated the percent variance 
explained (PVE) by dividing the variance in the BOLD sig-
nal explained by each model by the total variance in the 
original BOLD signal for every voxel.

In addition to the PVE analysis, whole-brain voxel-
wise cross-correlations were computed to examine the 
temporal relationship between physiological signals and 
BOLD fluctuations. Cross-correlations were calculated 
between the BOLD signal and HR/RV for the NKI dataset 
and between the BOLD signal and HR/end-tidal CO2 for 
the HRV-ER dataset. The RV, HR, and end-tidal CO2 sig-
nals were not convolved with response functions prior to 
the cross-correlation analysis; therefore, the cross-
correlation analysis makes no assumptions about the 
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form of the dynamic association between physiological 
and fMRI signals. These correlations were computed 
across time lags ranging from -2.8 seconds to 21.4 sec-
onds in the NKI dataset, with 1.4  seconds increments, 
and from -2.4 seconds to 21.6 seconds in the HRV-ER 
dataset, with 2.4 seconds increments, corresponding to 
the respective TRs of each dataset.

To further capture global trends at a macro level, 
cross-correlations were also computed using the BOLD 
signal averaged across three major tissue compartments: 
gray matter, white matter, and ventricles. This approach 
allowed for the examination of broader patterns in physi-
ological signal propagation beyond voxel-level resolu-
tion. Statistical comparisons were conducted at each 
time lag using t-tests, with multiple comparisons cor-
rected using Bonferroni correction.

2.5. Whole-brain statistical testing

Whole-brain maps of physiological signal propagation 
into BOLD fMRI data were compared in older versus 
younger adults using the HRV-ER and NKI datasets, 
focusing on the baseline (pre-intervention) condition in 
the HRV-ER dataset. Statistical differences in percent 
variance explained maps, or voxel-wise cross-correlation 
maps, were assessed using two-sample t-tests. To eval-

uate the effects of the HRV biofeedback intervention, 
pre- and post-intervention data from the subset of 
HRV-ER participants with both conditions were used to 
compute post- minus pre-differences separately for 
younger and older adults within each intervention condi-
tion (Osc+ and Osc−). To assess the effect of age on the 
intervention response, these post–pre difference maps 
were then compared between age groups using two-
sample t-tests. For all statistical analyses of whole-brain 
maps, multiple comparisons were corrected using the 
Threshold-Free Cluster Enhancement (TFCE) algorithm 
with 5000 permutations. This approach computes the 
null distribution empirically by shuffling group labels while 
preserving group sizes, ensuring that no parametric 
assumptions about equal variances or normality are 
required. As such, the validity and unbiasedness of the 
test are preserved even when group sizes differ, because 
permutation tests inherently maintain the original sam-
pling structure.

3. RESULTS

3.1. Physiological differences by age

Information about physiological metrics in the partici-
pants of the two datasets can be found in Table 1 and 

Fig. 1. Schematic for the model to determine the physiological component of the BOLD signal. (A) After detrending and 
normalizing heart rate and respiratory variation, the signals are convolved with CRF and RRF basis functions. For every 
voxel, a general linear model is used to find beta weights for each of the cardiac and respiration regressors to minimize the 
error from the original BOLD signal. (B) Example of an original BOLD signal (normalized to percent signal change) and the 
corresponding physiological component.
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Table 1. Physiological differences by age in the NKI dataset.

Metric
Younger adults

(n = 144)
Older adults

(n = 255) t-Statistic p-value

ln RMSSD 4.197 (0.410) 4.186 (0.640) 0.144 0.885
ln LF 6.879 (1.239) 6.373 (2.211) 3.553** 4.266e-04
ln HF 7.177 (1.661) 6.814 (2.608) 2.310* 2.142e-02
Avg HR 69.046 (82.872) 67.442 (80.538) 1.696 9.062e-02
SD RV 0.094 (0.001) 0.104 (0.002) -2.551* 1.115e-02
Breathing rate 17.700 (9.253) 15.610 (11.803) 5.922** 7.212e-09

Mean and variance for all measures are shown, along with t-test statistics comparing averages across age groups.
*p < 0.05, **p < 0.001.

Table 2. Physiological differences in the HRV-ER dataset by age and HRV biofeedback condition (Osc+ vs. Osc−).

Metric

Younger Osc+
(n = 20)

Young Osc−
(n = 21)

Old Osc+
(n = 19)

Old Osc−
(n = 18)

Young vs. 
old pre 
t-stats

Pre Post t-stat Pre Post t-stat Pre Post t-stat Pre Post t-stat t-stat

ln RMSSD 3.89 
(0.36)

3.98 
(0.36)

-0.985 4.06 
(0.31)

4.05 
(0.22)

0.049 3.13 
(0.39)

3.53 
(0.52)

-1.397 3.42 
(0.72)

3.14 
(0.68)

1.105 5.140***

ln LF 6.53 
(0.78)

6.73 
(0.72)

-0.938 6.30 
(0.75)

6.49 
(1.11)

-0.902 5.30 
(1.65)

6.01 
(2.30)

-1.699 5.82 
(1.79)

5.56 
(2.64)

0.609 4.301***

ln HF 6.71 
(1.20)

7.00 
(1.43)

-1.283 7.04 
(1.26)

7.02 
(0.87)

0.072 4.82 
(1.34)

5.87 
(1.64)

-2.371* 5.78 
(2.44)

5.49 
(2.48)

0.553 6.495***

Avg HR 67.64 
(102.85)

66.65 
(79.07)

0.561 66.93 
(82.67)

65.91 
(63.38)

0.589 65.68 
(39.37)

62.90 
(65.45)

2.233* 69.00 
(105.87)

68.04 
(100.84)

0.721 -0.153

Avg CO2 38.48 
(25.69)

39.30 
(13.53)

-0.574 39.53 
(22.44)

39.10 
(35.22)

0.290 39.74 
(14.10)

39.30 
(18.29)

0.607 40.68 
(12.82)

42.08 
(16.28)

-2.753* -0.019

Breathing 
Rate

16.90 
(16.08)

15.50 
(19.07)

1.744 18.03 
(7.60)

18.13 
(7.53)

-0.212 15.87 
(11.98)

14.86 
(17.80)

1.586 13.73 
(13.59)

13.66 
(10.36)

0.104 2.767**

Mean and variance for all measures are shown, along with t-test statistics comparing averages across age groups and between pre- and 
post-intervention within each group.
*p < 0.05, **p < 0.001, ***p < 0.001.

Table 2, and is summarized in Figure 2. When calculating 
summary statistics, we identified outliers using the inter-
quartile range (IQR) method, where values falling below 
Q1-1.5 ×  IQR or above Q3 + 1.5 ×  IQR were excluded 
from analysis for that specific metric only, while retaining 
the participant’s valid data for other measurements. 
Since RMSSD, low frequency (LF) HRV, and high fre-
quency (HF) HRV are not normally distributed, we applied 
a natural log transformation before statistical analysis. As 
detailed in Table 1 and Table 2, the older adults exhibited 
significantly lower ln(LF HRV) and ln(HF HRV) than 
younger adults. Although older adults had lower RMSSD 
than younger adults, this difference was not significant in 
the NKI dataset, although it was in the HRV-ER dataset. 
As shown in Table 1, older adults also exhibited higher 
standard deviation in RV than younger adults. However, 
in both datasets, average HR was not significantly differ-
ent between the two age groups. In addition, breathing 
rate was significantly higher in younger adults in both 
datasets.

3.2. Age differences in the percent variance of the 
BOLD signal explained by peripheral physiological 
measures

To examine the extent to which the fMRI BOLD signal 
was associated with peripheral physiological measures, 
we convolved heart rate and respiration time courses 
with their respective physiological impulse response 
basis functions to obtain cardiac and respiration regres-
sors, which we then fit to the BOLD signal in each voxel 
using a general linear model (Section 2.4). For the com-
parison of age-related differences in the HRV-ER dataset, 
subjects’ percent variance explained maps were calcu-
lated based only on their baseline scan prior to the HRV 
biofeedback intervention.

Results are presented in Figure 3. In both datasets, 
the percent variance in BOLD signal explained by heart 
rate and respiration was significantly greater in younger 
adults than in older adults, in the orbital frontal cortex 
(OFC), lateral ventricle, basal ganglia, and white matter 



7

R. Song, J. Min, S. Wang et al. Imaging Neuroscience, Volume 3, 2025

(Fig. 3A). In the NKI dataset, percent variance of BOLD 
explained by heart rate and respiration was also signifi-
cantly higher in the ACC and insula; these were also 
among the regions showing the strongest mean age-
related differences in the HRV-ER dataset, though they 
did not survive the statistical threshold. The maps of 
percent variance of BOLD explained by heart rate 
(Fig. 3B) closely resembled the statistical maps resulting 
from jointly fitting heart rate and respiration (Fig. 3A). In 
both datasets, percent variance of BOLD explained by 
heart rate was higher in younger adults than in older 
adults in the lateral ventricles, basal ganglia, and white 
matter (Fig.  3B). There were also subthreshold differ-

ences in the HRV-ER dataset that were significant in the 
NKI dataset in the ACC, insula, and OFC. Interestingly, 
the percent variance in BOLD explained by respiration 
(e.g. RV in the NKI dataset and CO2 in the HRV-ER data-
set) showed different age-related differences. In the NKI 
dataset, BOLD variance accounted for by RV was sig-
nificantly higher in younger adults in OFC, insula, lateral 
ventricles, and ACC (Fig.  3C). In the HRV-ER dataset, 
older adults had slightly higher percent variance in 
BOLD accounted for by CO2 than younger adults in 
white matter and occipital cortex based on the group 
average maps; however, these differences were not sta-
tistically significant.

Fig. 2. Log-transformed metrics of HRV (RMSSD, LF Power, HF Power) and low-frequency peripheral physiology across 
the (A) NKI dataset and (B) HRV-ER dataset. Standard box and whisker plots are overlaid over the violin plots. *p < 0.05.
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3.3. Age differences in the cross-correlation 
between the BOLD signal and physiological 
measures at different time lags

To further examine how age impacts the dynamic associ-
ation between physiological and BOLD signals, we com-
puted the cross-correlations between the two signals 
(Section 2.5). In addition to revealing information about 
the temporal dynamics of BOLD–physiological coupling, 
a cross-correlation analysis does not assume specific 
hemodynamic impulse response models in the relation-
ship between physiological and BOLD signals. Results 
for the NKI dataset are shown in Figure 4 and results for 
the HRV-ER dataset are shown in Figure 5, with signifi-
cant clusters outlined in the figures (and discussed below) 
at TFCE-corrected thresholds of p < 0.05.

In the NKI dataset, the older adults exhibited signifi-
cantly higher HR–BOLD cross-correlation across wide-
spread regions at a lag of -2.8  seconds. In contrast, 

younger adults had significantly higher HR–BOLD cross-
correlation in lags 2.8 seconds and 5.6 seconds in the ven-
tricles, white matter, and ACC (Fig. 4A). In addition, younger 
adults had stronger negative HR–BOLD cross-correlations 
in the prefrontal cortex (PFC), OFC, and insula in lags 
8.4  seconds and 11.2  seconds, as well as in the lateral 
ventricles in lags 11.2 seconds and 14.0 seconds (Fig. 4A). 
Younger adults also had more positive HR–BOLD cross-
correlations at later time lags in the NKI dataset, between 
30.8 seconds and 39.2 seconds, across the gray matter 
(Supplementary Fig. 3). Similar spatiotemporal trends were 
present in the HRV-ER dataset, albeit with smaller and/or 
nonsignificant effect sizes (Fig. 5). Here, the older adults 
also had significantly higher HR–BOLD cross-correlation 
across most of the brain at time lag of -2.4 seconds. The 
younger adults had higher subthreshold HR–BOLD cross-
correlation in lags 2.4 and 4.8 seconds in a small number 
of voxels in the white matter, ventricles, ACC, and OFC 

Fig. 3. Percent variance of BOLD signal explained by low-frequency peripheral physiology across all voxels. Three 
separate models were used to determine the variance in the BOLD signal explained by (A) both heart rate and respiration, 
(B) only heart rate, and (C) only respiration. In each panel, age group averages are shown for young and old participants. 
Voxels in which percent variance explained in younger adults was statistically significantly greater than older adults 
(p < 0.05 TFCE-corrected) are outlined in black, and alpha-fading was used to highlight sub-threshold voxels. For 
visualization purposes in the NKI dataset, p values were transformed using the natural logarithm to improve the contrast 
between highly significant voxels (e.g. p < 0.01). The brain slices shown are at z = -16 mm, 4 mm, 24 mm, 44 mm, and 
64 mm in standard MNI152 space.
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(Fig. 5A). Younger adults also had significantly more nega-
tive HR–BOLD cross-correlation in occipital cortex at lag 
7.2 seconds (Fig. 5A). In addition, younger adults had more 
negative sub-threshold differences in HR–BOLD correla-
tions throughout the gray matter from lags 7.2 seconds to 
19.2 seconds (Fig. 5A). These results are further supported 
by Figure  6A, which show that in the NKI dataset, HR–
BOLD cross-correlations are significantly higher in younger 

adults at earlier lags (between 3 and 6 seconds) in white 
matter and ventricles, and significantly more negative in 
younger adults at later lags (between 10 and 15 seconds) 
across the whole brain. The HRV-ER dataset shows similar 
spatiotemporal trends with smaller and/or nonsignificant 
effect sizes (Fig. 6A).

In the NKI dataset, RV–BOLD cross-correlations were 
significantly higher in younger adults in the ventricles at 

Fig. 4. (A) HR–BOLD and (B) RV–BOLD cross-correlations for different time lags in the NKI dataset. Negative lags 
indicate that BOLD leads the physiological measure, and vice versa for positive lags. Age group averages for Pearson 
r coefficients are plotted at each lag. Significant voxels by age group at p < 0.05 (TFCE-corrected) are also outlined in 
black at each lag, along with alpha fading to show sub-threshold voxels. Red voxels indicate that young adult r values 
are greater than old adults, and blue voxels indicate that old adult r values are more positive (or less negative) than young 
adults. For visualization purposes, p values are transformed using the natural logarithm to improve the contrast between 
highly significant voxels (e.g. p < 0.01). The brain slices shown are at z = -6 mm, 4 mm, 24 mm, 44 mm, and 64 mm in 
standard MNI152 space.
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lags -2.8 seconds, 0 seconds, and 2.8 seconds, as well 
as across the gray matter at lags -2.8 seconds and 0 sec-
onds (Fig.  4B). From lags 5.6  seconds to 14  seconds, 
younger adults exhibited significantly more negative RV–
BOLD cross-correlations in the ACC, basal ganglia, and 
PFC at lags 5.6, 8.4, and 11.2 seconds, with additional 
negative RV–BOLD correlations observed in the lateral 
ventricles at lags 8.4, 11.2, and 14  seconds (Fig.  4B). 
Similarly, in the HRV-ER dataset, younger adults exhib-

ited significantly higher (p < 0.05 TFCE-corrected) CO2–
BOLD cross-correlations in the OFC, insula, and ACC at 
lags 0, 2.4, and 4.8  seconds, with subthreshold differ-
ences appearing at lag -2.4  seconds and between 7.2 
and 12 seconds (Fig. 5B). Figure 6B further illustrates this 
pattern, showing that in the NKI dataset, RV–BOLD 
cross-correlations were higher (p < 0.05 uncorrected) in 
younger adults than in older adults between 0 and 3 sec-
onds in the white matter and ventricles. Additionally, 

Fig. 5. (A) HR–BOLD and (B) CO2–BOLD cross-correlations for different time lags in the HRV-ER dataset at baseline. 
Negative lags indicate that BOLD leads the physiological measure, and vice versa for positive lags. Age group averages 
for Pearson r coefficients are plotted at each lag. Significant voxels by age group at p < 0.05 (TFCE-corrected) are also 
outlined in black at each lag, along with alpha fading to show sub-threshold voxels. Red voxels indicate that young adult 
r values are greater than old adults, and blue voxels indicate that old adult r values are greater than young adults. The 
brain slices shown are at z = -16 mm, 4 mm, 24 mm, 44 mm, and 64 mm in standard MNI152 space.
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Fig. 6. Cross-correlations between the BOLD signal and (A) heart rate and (B) respiration (i.e., CO2 for HRV-ER, 
RV for NKI), averaged across three tissue types: gray matter, white matter, and ventricles. In the HRV-ER data, both 
BOLD signal and CO2/HR are upsampled to TR = 0.2 seconds before cross-correlation calculation, but no upsampling 
occurred in the NKI data. Group averages for old and young adults are plotted along with shading for standard 
error. Lags where the cross-correlations between older and younger adults are statistically significant (p < 0.05) after 
Bonferroni correction are plotted in dark gray, and lags where the cross-correlation passed a p < 0.05 uncorrected 
threshold are plotted in light gray.
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Fig. 7. Impact of HRV biofeedback on BOLD–physiological cross-correlations. Cross-correlations between the BOLD 
signal (averaged across gray matter, white matter, and ventricles) and (A) HR and (B) CO2, before and after the Osc+ 
condition, are plotted. Cross-correlations between the BOLD signal (averaged across gray matter, white matter, and 
ventricles) and (C) HR and (D) CO2, before and after the Osc− condition, are plotted. Group averages are plotted along 
with standard error shading at every time point. Both BOLD signal and CO2/HR are unsampled to TR = 0.2 seconds 
before cross-correlation calculation. Lags where the cross-correlations between pre- and post-intervention are statistically 
significant (p < 0.05) after Bonferroni correction are plotted in dark gray, and lags where the difference passed a p < 0.05 
uncorrected threshold are shown in light gray.

younger adults exhibited significantly more negative RV–
BOLD cross-correlations in all three tissue types at later 
lags between 7 and 12 seconds. This trend is consistent 
with the HRV-ER dataset, where CO2–BOLD cross-
correlations in younger adults were greater in gray matter 
between -2 and 5 seconds (p < 0.05 uncorrected). These 
findings highlight an earlier onset of BOLD responsive-
ness to respiration in younger adults, as supported by 
both datasets.

3.4. Modulation of HR- and CO2–BOLD coupling by 
HRV biofeedback: Age and condition effects

To assess the effects of the HRV-biofeedback on physio-
logical signal propagation into the fMRI BOLD signal, we 

computed whole-brain HR–BOLD and CO2–BOLD cross-
correlations both before and after 5 weeks of each inter-
vention separately for both age groups (Section 2.5). For 
older adults, the HR–BOLD cross-correlation was signifi-
cantly more negative after the Osc+ intervention than 
before it (p < 0.05 Bonferroni-corrected) in the gray mat-
ter from 6 to 11 seconds, and this trend was present in 
the gray matter from 5 to 17 seconds (p < 0.05 uncor-
rected) (Fig. 7A). This effect is further evident in Figure 8, 
which shows the voxelwise equivalent of this whole-brain 
average score. Here, from 7.8 to 16.2  seconds, older 
adults had more negative HR–BOLD cross-correlations 
(subthreshold) throughout the gray matter after Osc+, 
and this result reached statistical significance between 
9.6 and 12.0 seconds in the occipital cortex.
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In addition, for participants in the Osc− condition, 
younger adults exhibited significantly greater (p <  0.05 
TFCE-corrected) post–pre BOLD variance explained by 
HR and CO2 in the left temporal lobe (Supplementary 
Fig.  4A). This effect appears to be driven primarily by 
BOLD–CO2 coupling rather than BOLD–HR coupling, as 
younger adults had greater BOLD variance explained by 
CO2 in left OFC, left insula, left temporal cortex along with 
the lateral ventricles, bilateral occipital cortices, and 
bilateral PFC (Supplementary Fig. 3C). However, most of 
these voxel-level differences did not reach statistical sig-
nificance after correcting for multiple comparisons using 
TFCE with 5000 permutations.

4. DISCUSSION

4.1. General findings

This study examined the impact of aging on how heart 
rate and respiration modulate the fMRI BOLD signal 
across two independent datasets. Across both datasets, 
we observed significant age-related differences in HRV 
metrics, with younger participants demonstrating higher 
levels of RMSSD, HF HRV, and LF HRV than older partic-
ipants. Younger adults also exhibited higher BOLD signal 

variance explained by heart rate and respiration across 
both datasets in areas such as the white matter, OFC, 
ventricles, insula, and ACC, results that were also mir-
rored in the cross-correlation analysis. In both the CO2–
BOLD cross-correlations in the HRV-ER and the RV–BOLD 
cross-correlations in the NKI dataset, younger adults 
exhibited significantly earlier response onset than in older 
adults.

In the second dataset, we also examined whether 
several weeks of HRV biofeedback affected the rela-
tionships between BOLD signal and physiology. We 
found that HRV biofeedback training modulated physi-
ological signal propagation into the BOLD signal in a 
condition- and age-dependent manner. Specifically, in 
older adults, the Osc+ condition caused HR-BOLD 
coupling to resemble a pattern more typical of younger 
adults. These findings offer new insights into the rela-
tionship between autonomic nervous system (ANS) 
function and brain aging, and we discuss their implica-
tions below.

4.2. HRV metrics and ANS regulation

The observed reduction in HRV metrics (ln RMSSD, ln LF, 
ln HF) in older adults aligns with prior research linking 

Fig. 8. HR–BOLD whole-brain cross-correlation plots for older adults before and after the Osc+ intervention. Group 
averages for Pearson r coefficients are plotted at each lag. Significant voxels by age group at p < 0.05 (TFCE-corrected) 
are also outlined in black at each lag, along with alpha fading to show sub-threshold voxels. Red voxels indicate that post 
Osc intervention r values are greater than pre Osc intervention r values, and vice versa for blue voxels. The brain slices 
shown are at z = -16 mm, 4 mm, 24 mm, 44 mm, and 64 mm in standard MNI152 space.
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aging to diminished ANS regulation (Jandackova et al., 
2016; Mather, 2024; Reardon & Malik, 1996; Thayer et al., 
2021; Voss et al., 2012). HRV reflects the dynamic adapt-
ability of the ANS to internal and external stimuli, encom-
passing both sympathetic and parasympathetic activity. 
Lower HRV, as observed in older adults, is indicative of 
reduced autonomic flexibility and cardiovascular adapt-
ability, which have been associated with impaired barore-
ceptor sensitivity, vascular stiffening, and altered 
neurocardiac signaling pathways (Yugar et  al., 2023; 
Ziegler, 2021). Consequently, cerebral blood flow 
becomes more susceptible to systemic blood pressure 
variations, potentially causing cerebral hypoperfusion or 
hyperperfusion (Ogoh & Tarumi, 2019). Over time, these 
disruptions may contribute to structural changes in the 
brain, including white matter lesions and microvascular 
damage, which are strongly linked to cognitive decline 
and neurodegenerative diseases such as Alzheimer’s 
(Badji et al., 2019; Han et al., 2021; Reeve et al., 2024).

4.3. Age-related differences in physiological–BOLD 
dynamics

To model the contribution of physiological signals to 
BOLD variance, we convolved basis functions for the car-
diac response function (CRF) with HR (Chang et al., 2009; 
Chen et al., 2020) and for the respiratory response func-
tion (RRF) with RV (Birn et al., 2008; Chen et al., 2020) in 
the NKI dataset, while in the HRV-ER dataset, end-tidal 
CO2 was modeled with the end-tidal CO2 response func-
tion (Golestani et  al., 2015). The peaks and troughs in 
these impulse response functions represent the charac-
teristic temporal dynamics of physiological signal propa-
gation into the BOLD signal. The use of flexible basis sets 
can capture differences in how fluctuations in HR, RV, 
and end-tidal CO2 drive BOLD signal changes across dif-
ferent regions and by age. Due to the potential non-
uniqueness of explained variance in the cardiac-only or 
respiratory-only models, we focus our discussion on the 
age-related differences in BOLD variance explained by 
both cardiac and respiratory signals (Fig. 3A).

Regions such as the insula, OFC, ACC, and basal gan-
glia showed significant age differences in BOLD variance 
explained by physiological signals, which is noteworthy 
because these areas have been shown to exhibit reduced 
cerebral blood flow (CBF) with age (Lu et al., 2011). This 
suggests that diminished vascular reactivity or neurovas-
cular coupling (linked with central autonomic activity) in 
these regions could contribute to the observed reduc-
tions in physiological–BOLD coupling in older adults. 
Although BOLD variance explained by heart rate and res-
piration showed global differences across the brain 
between younger and older adults in the NKI dataset, 

another reason for the regional specificity in age-related 
BOLD variance explained by physio differences seen in 
the HRV-ER dataset may be related to the central auto-
nomic network (CAN). Beissner et  al. (2013) showed 
prominent cortical hubs of the human CAN include the 
OFC, ACC, and bilateral insula—the same areas show 
the strongest age-related drop in BOLD variance 
explained by cardiac and respiratory regressors in our 
data. Given the age-related decline in autonomic tone, 
we interpret this spatial overlap as reflecting weakened 
neuronal engagement of the CAN. This may impair the 
concordance between neural activity in CAN hubs, ordi-
narily responsible for modulating cardiac and respiratory 
output, and the resulting peripheral physiological signals, 
thereby reducing the BOLD variance these signals explain 
in older adults. Future studies should probe how aging 
affects activity in the CAN using EEG or intracranial 
recordings to confirm whether age-related declines in 
neural engagement of the CAN drive reductions in auto-
nomic tone.

Additionally, BOLD variance explained in white matter 
by physiological signals was significantly greater in 
younger adults. Modulation of vascular tone accompany-
ing low-frequency fluctuations in systemic physiology 
may form a major component of white matter fMRI sig-
nals, particularly in periventricular white matter (Min et al., 
2022; Özbay et  al., 2018, 2019). The observed age-
related reduction of white matter effects may align with 
previous studies implicating reduced structural integrity 
of white matter tracts due to arterial stiffening (Badji et al., 
2019; Han et  al., 2021). Arterial stiffening can compro-
mise microvascular function, impairing oxygen delivery 
and potentially reducing the responsiveness of white 
matter to autonomic signals.

The finding of significant differences in the ventricles is 
also particularly intriguing. Younger adults showed greater 
fMRI signal variance explained by physiological signals in 
the ventricles, which might relate to cerebrospinal fluid 
(CSF) dynamics. Previous work suggests that negative 
cerebrovascular reactivity (CVR) in brain ventricles during 
fMRI reflects a dilation of ventricular vessels, decreasing 
the relative proportion of CSF per unit volume (Thomas 
et al., 2013). If these ventricular vessels are less responsive 
in older adults, it could explain the reduced variance in 
fMRI signals explained by physiological signals in these 
regions. Moreover, changes in breathing have been shown 
to directly alter both white matter and CSF signals through 
mechanisms such as sympathetically mediated effects on 
gray matter vascular tone (Picchioni et  al., 2022). Our 
observations suggest that these global vascular dynamics 
may also be impaired in aging.

In the HRV-ER dataset, although older adults showed a 
slightly higher proportion of BOLD signal variance 
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explained by CO2 in regions such as the occipital cor-
tex—a somewhat counterintuitive pattern given other age-
related differences—cross-correlation analyses also 
revealed that older adults had stronger BOLD–CO2 cor-
relations in the ventricles at particular lags. By contrast, in 
the larger NKI dataset, younger adults typically demon-
strated higher variance explained by RV throughout much 
of the brain. One possibility is that the Golestani et  al. 
(2015) basis set for end-tidal CO2, derived from younger 
adults, may not fully capture older adults’ altered vascular 
responses. However, these findings may also suggest that 
mechanisms other than arterial CO2 concentrations—
such as respiratory-correlated heart rate changes 
(De Meersman, 1993; Masi et  al., 2007) and sympa-
thetic nervous system activity on cerebrovasculature 
(Balasubramanian et  al., 2019; Mather, 2024; Rim et  al., 
2022)—could drive age differences in respiration-related 
brain hemodynamics in the NKI dataset. Because RV and 
CO2 were collected in separate datasets with different 
sample sizes, it remains unclear whether the observed dis-
crepancies reflect genuine physiological differences or are 
partly influenced by sampling variation, reduced power, or 
different measurement modalities (RV vs. CO2). Future 
studies that measure RV and CO2 concurrently will be 
essential to replicate and further investigate these effects.

While both RV and end-tidal CO2 relate to the arterial 
CO2 changes that modulate cerebral blood flow, they dif-
fer in temporal dynamics, temporal resolution, and phys-
iological sources: RV reflects instantaneous changes in 
tidal volume and breathing rate, whereas end-tidal CO2

samples alveolar CO2 only during exhalation and does 
not capture respiratory effects at higher temporal resolu-
tions. Although some of the physiological mechanisms 
driving RV and PETCO2 are shared, they still contribute 
distinct information about physiological information. This 
is an important point to consider when interpreting the 
results of our study, especially the differences in RV and 
CO2 fluctuations in BOLD activity.

It is important to note that the PVE by physiological 
signals in the BOLD signal represents a fractional, not 
absolute, contribution to BOLD variance. Thus, an 
observed decrease in PVE for older adults does not nec-
essarily reflect the raw amplitude of physiological 
responses alone; instead, it can arise from changes in 
both the numerator (physiologically and neuronally driven 
variance) and the denominator (total BOLD variance). 
Therefore, another potential interpretation of our findings 
is that higher levels of resting-state BOLD variance could 
account for lower PVE by physiological signals in the 
BOLD signal in older adults. However, this scenario is 
unlikely as it is well documented that resting-state BOLD 
variance declines with age (Garrett et al., 2010; Kumral 
et  al., 2020; Millar et  al., 2020; Tsvetanov et  al., 2021). 

Alternatively, if neuronal variability increases in older 
adults or if neuronal stimuli generate proportionally more 
BOLD variance than physiological fluctuations, the frac-
tion of variance explained by physiological signals could 
appear lower—even if absolute physiological responses 
remain unchanged. Yet empirical evidence generally sug-
gests that aging diminishes neuronal hemodynamic 
responses of the brain (Fabiani et al., 2014; Ward et al., 
2015; West et al., 2019). For example, older adults show 
reduced hemodynamic response function amplitude 
during a visual–auditory task (West et al., 2019). In sum, 
the most likely explanation for our observed decrease in 
physiological PVE with age is that vascular and structural 
changes attenuate the absolute BOLD response to phys-
iological fluctuations (Badji et al., 2019; Han et al., 2021; 
Hoiland et al., 2019; Lu et al., 2011; Reeve et al., 2024; 
Rucka et  al., 2015). Future studies that simultaneously 
measure neuronal and physiological components of 
BOLD variability, along with direct indices of vessel com-
pliance or vascular tone, will help clarify these mecha-
nisms.

4.4. Time lag dynamics and cerebrovascular 
response

In both younger and older adults, the HR–BOLD and RV–
BOLD cross-correlations demonstrated canonical pat-
terns, resembling the shapes of the cardiac response 
function (CRF) and respiratory response function (RRF), 
respectively. These patterns are characterized by an ini-
tial positive peak followed by a decline, transitioning to 
negative correlations at later lags (Supplementary Fig. 2). 
The temporal profiles and regional distributions of these 
correlations align with findings from previous studies 
(Birn et al., 2008; Chen et al., 2020; Gold et al., 2024), 
which similarly reported early positive correlations transi-
tioning to negative correlations as a hallmark of BOLD–
physiological coupling. Across both NKI and HRV-ER 
datasets, HR–BOLD cross-correlation was stronger in 
younger adults in areas that are highly vascularized, 
including the orbitofrontal cortex (OFC), basal ganglia, 
ventricles, and white matter tracts supplied by major 
arteries such as the anterior cerebral artery (ACA), middle 
cerebral artery (MCA), and posterior cerebral artery (PCA). 
While age-group differences in the HRV-ER dataset did 
not survive TFCE correction, this dataset showed similar 
trends as those in the NKI dataset. Since the HRV-ER 
dataset has a much smaller sample size, it is possible 
that, with more statistical power, these differences would 
have reached significance. Overall, our HR–BOLD cross-
correlation results provide additional support for the 
stronger BOLD variance explained by heart rate in 
younger adults.
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Of note, a recent study also examined cross-correlation 
between physiological signals and BOLD signals in the 
Human Connectome Project Aging (HCP-A) dataset (Fan 
et al., 2025). In contrast to our results, this study found that 
the oldest adults (60+ years) in the HCP-A cohort exhibited 
larger peak cross-correlation between inter-heart-beat 
intervals (HBIs, i.e., the inverse of heart rate) and global 
cortical BOLD signal than middle-aged (36–60 years) and 
younger (18–36  years) adults. Importantly, however, the 
oldest adults in this HCP-A cohort had significantly higher 
RMSSD HRV than the middle-aged group. Younger adults 
in our datasets, in contrast, had higher RMSSD than older 
adults (although non-significant for the NKI dataset). This 
raises an important question about whether baseline phys-
iology may underlie HR–BOLD cross-correlations that is to 
be explored in future studies.

The CO2–BOLD correlations in our study provide fur-
ther insight into the role of cerebrovascular response and 
vascular propagation in age-related changes in neuro-
vascular dynamics. First, Figure 6 reveals a notable con-
sistency between the CO2–BOLD responses in the 
HRV-ER dataset and the (negative deflection of the) RV–
BOLD responses in the NKI data, a dynamic relationship 
that may be expected from prior reports with concurrent 
RV and end-tidal CO2 monitoring (Chang & Glover, 2009). 
In the HRV-ER dataset, younger adults exhibited faster 
CO2–BOLD cross-correlation peaks than older adults, 
which could translate to a more rapid cerebrovascular 
response to changes in metabolic demands (Hoiland 
et al., 2019; Lu et al., 2011). Similarly, in the NKI dataset, 
younger adults showed an earlier onset of the dip in RV–
BOLD cross-correlations, which may mirror this faster 
cerebrovascular response, suggesting a consistent age-
related pattern across datasets. Fan et  al. (2025) also 
studied cross-correlations between RV and global corti-
cal BOLD in the HCP-A dataset and found that dip in 
RV–BOLD cross-correlation occurs later in older adults 
than in younger adults, which is consistent with our find-
ings. Cerebrovascular response, defined as the ability of 
blood vessels to dilate in reaction to increases in CO2, is 
crucial for maintaining oxygen delivery and cerebral per-
fusion. In younger adults, this response is more synchro-
nized and efficient, leading to quicker adjustments in 
blood flow (Hoiland et al., 2019; Lu et al., 2011). In con-
trast, older adults exhibited delayed CO2–BOLD correla-
tion peaks, which may reflect a slower cerebrovascular 
response and cerebral blood flow due to age-related 
arterial stiffening and reduced vessel compliance (Badji 
et al., 2019; Hoiland et al., 2019; Lu et al., 2011; Reeve 
et al., 2024; Rucka et al., 2015). These changes impair 
the dynamic ability of the vascular system to transmit 
blood flow signals efficiently, delaying the response to 
CO2 fluctuations.

4.5. HRV biofeedback and physiological modulation

Our findings regarding HRV biofeedback highlight intrigu-
ing age- and condition-dependent effects. In the HRV-ER 
dataset, the Osc+ intervention (which aimed to enhance 
HR oscillations) in older adults resulted in more negative 
HR–BOLD cross-correlations at the lags between 6 and 
11  seconds, closely resembling the patterns typically 
observed in younger adults. This suggests that increas-
ing HR oscillations through biofeedback may partially 
restore age-related declines in the cerebrovascular 
response. Such a shift toward a more “youth-like” physi-
ological response profile may reflect enhanced auto-
nomic flexibility and improved vascular responsiveness 
(Deschodt-Arsac et  al., 2018; Fournié et  al., 2021; 
Mohapatra et al., 2024)—perhaps even with implications 
for neural activity (Bright et  al., 2020; Mather &Thayer, 
2018).

Indeed, as proposed by Mather and Thayer (2018), 
high-amplitude oscillations in heart rate may enhance 
functional connectivity within emotion–regulation 
networks—especially in medial prefrontal areas sensitive 
to physiologically driven oscillatory input. Additional evi-
dence of the potential neural benefits of higher-amplitude 
heart rate oscillations in older adults comes from Jung 
et al. (2024), who found that changes in resting HRV sig-
nificantly mediated reductions in negative emotion in the 
group instructed to increase HR oscillations (Osc+). Thus, 
when older adults successfully enhanced their cardiac 
dynamics, they also experienced improved emotional 
well-being—an effect directly tied to changes in auto-
nomic functioning (Mather & Thayer, 2018). Our observa-
tions are also in line with recent work examining other 
aspects of the HRV-ER dataset, which demonstrate mul-
tiple benefits associated with increasing HR oscillations. 
For instance, Yoo et al. (2022) reported that daily practice 
to augment HR oscillations (Osc+) led to increased corti-
cal volume in the left orbitofrontal cortex (OFC) for both 
younger and older adults, suggesting a positive impact 
on key prefrontal regulatory regions. Beyond emotion 
regulation, Min et  al. (2023) show that Osc+ training 
decreased plasma Alzheimer’s disease (AD)-related bio-
markers (plasma Aβ40 and Aβ42), whereas the Osc− 
condition actually increased these biomarkers. This 
suggests a link between autonomic regulation and path-
ways implicated in AD pathophysiology.

Taken together, these convergent findings demon-
strate that interventions designed to boost heart rate 
oscillations can partially restore age-related declines in 
autonomic and vascular responsiveness. Our results also 
suggest that HR–BOLD coupling may serve as a bio-
marker of autonomic health in older adults, aligning with 
broader evidence that links increasing vagal tone to 
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enhanced emotional well-being and potentially to neuro-
protective benefits.

4.6. Role of physiological state

Interestingly, the differences in magnitude of HR–BOLD 
correlations between older and younger adults (Figs. 4, 5) 
suggest potential parallels with the vigilance-related 
fMRI-autonomic covariance patterns observed by Gold 
et al. (2024). This study highlighted that fMRI-autonomic 
covariance differs across baseline vigilance states, with 
stronger variance in fMRI explained by physiological sig-
nals during low vigilance, which is associated with 
reduced arousal and parasympathetic dominance. In 
contrast, high vigilance states, characterized by height-
ened norepinephrine levels and sympathetic dominance, 
were associated with weaker fMRI–autonomic coupling. 
Older adults in our study, with their observed patterns of 
delayed HR–BOLD and RV–BOLD correlations, may 
resemble this higher vigilance state. Sympathetic domi-
nance in older adults (Mather, 2024) could explain these 
temporal differences—particularly as the older-adult 
cohorts in our study exhibited reductions in high-
frequency heart rate variability and RMSSD, compared 
with the younger adults.

In addition to the analysis described in previous sec-
tions, we sought to clarify whether the age-related 
changes in BOLD–physiological differences were arising 
due to age-induced changes in the coupling of physio-
logical signals to the BOLD signal, or just age-related 
changes in physiological signals themselves (Jandackova 
et al., 2016; Reardon & Malik, 1996; Voss et al., 2012). 
There is also evidence of sex differences in HRV (Koenig 
& Thayer, 2016) as well as sex differences in vascular 
aging (Ji et  al., 2022), which may have influenced our 
results. To isolate the effect of aging on BOLD–
physiological coupling as the underlying mechanism 
explaining our findings, we replicated our PVE and cross-
correlation analysis while controlling for variables such as 
sex, average heart rate, LF HRV, HF HRV, breathing rate, 
average end-tidal CO2 (for the HRV-ER dataset), and 
standard deviation of RV (in the NKI dataset). Across both 
datasets, we observed that controlling for these covari-
ates had no effect on the age-related differences in 
BOLD–HR, BOLD–RV, or BOLD–CO2 cross-correlations 
(Supplementary Fig. 5). Additionally, in the HRV-ER data-
set, adjusting for average HR, LF HRV, and HF HRV had 
no impact on the Osc+ mediated difference in HR–BOLD 
cross-correlation among older adults (Supplementary 
Fig. 6).

In the HRV-ER dataset, controlling for gender, LF and 
HF HRV, average HR, and average end-tidal CO2

increases the number of voxels in which younger adults’ 

BOLD PVE by HR and end-tidal CO2 is significantly 
greater than older adults’ BOLD PVE, particularly in gray 
matter regions, such as the orbitofrontal cortex, anterior 
cingulate cortex, and insula (Supplementary Fig.  7). 
However, additionally controlling for breathing rate 
removes all significant voxels (Supplementary Fig.  7), 
suggesting that breathing rate is tightly linked to the 
observed coupling differences in this cohort. In the NKI 
dataset, controlling for gender, average HR, LF and HF 
HRV, standard deviation RV, and breathing rate seemed 
to preserve most of the significant age-related differ-
ences in BOLD PVE by HR and RV in the gray matter 
and periventricular white matter, although there appears 
to a reduction in significant voxels in white matter (Sup-
plementary Fig. 8). This seems to suggest that some of 
the white matter PVE differences outside of the periven-
tricular area may be attributable to group differences in 
baseline physiology, whereas the core age effect in the 
gray matter reflects genuine alterations in physiological–
BOLD coupling. Taken together, these findings under-
score the complexity of interpreting physiological–BOLD 
coupling in aging research, as different physiological 
covariates can either reveal or mask significant group 
differences.

4.7. Implications for physiological preprocessing 
and data collection in fMRI studies

Our finding that younger adults exhibit markedly stronger 
BOLD coupling to heart rate and respiration fluctuations 
than older adults raises practical questions for routine 
fMRI preprocessing. For example, if one wishes to 
remove physiological effects from fMRI data, should such 
“corrections” be applied differently in younger versus 
older populations? Further, if physiological effects pro-
vide valuable insight into the aging brain, in which cases 
should they be removed?

Importantly, current tools do not readily discern 
whether physiological influences on the BOLD signal in a 
given region reflect changes in neuronal activity, vascular 
effects, or both. Simply regressing out a subspace asso-
ciated with peripheral physiology would remove neuronal 
and vascular effects together, including cognitive or emo-
tional processes closely linked with autonomic modula-
tion. Therefore, future studies need to examine in more 
depth the specific mechanisms driving the physiological 
component of the BOLD signal, and whether the respec-
tive contributions of these mechanisms differ in older ver-
sus younger adults. A clearer understanding of these 
mechanisms would also help researchers to handle 
physiological effects in a manner that is optimized to the 
specific goals of the study. For example, cognitive neuro-
science studies aiming to identify specific task-evoked 
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neural activity may prefer to preserve as much true neural 
signal as possible, even if some (vascular) physiological 
effects remain uncorrected. Conversely, studies focused 
on cerebrovascular function may want to retain vascular 
contributions to the BOLD signal, as these are of direct 
interest, while minimizing confounding neural fluctua-
tions.

We can, however, strongly recommend future aging-
related fMRI studies to collect concurrent measures of 
cardiac and respiratory activity in both older and younger 
adults, especially since the extent to which these signals 
modulate the BOLD signal is different with age. These 
data provide a critical reference point for understanding 
how physiological processes modulate the BOLD signal 
in different brain regions and age cohorts. Without such 
recordings, researchers may inadvertently attribute group 
differences in BOLD signal to cognitive or neural factors 
when, in fact, they may stem from group differences in 
systemic physiology or brain–body dynamics. Thus, con-
current recordings may improve interpretability and allow 
researchers to better contextualize their findings.

4.8. Limitations and future directions

Several limitations should be noted. First, the canonical 
impulse responses used to model the BOLD response to 
heart rate, respiration, and CO2 were originally derived 
from younger adults. It is possible that these impulse 
responses do not fully capture the altered vascular dynam-
ics characteristic of older adults, potentially underestimat-
ing the percent variance explained in this group. While our 
model-free cross-correlation analyses largely corroborate 
the presence of age-related differences, developing age-
specific physiological response functions would be a valu-
able direction for future work. Second, the temporal 
resolution for all of our cross-correlation analyses is inher-
ently limited by the image TR, and future studies with 
shorter TR may be able to better capture the temporal 
dynamics of physiological–BOLD coupling. Third, the rela-
tively small sample size for post-intervention scans in the 
HRV-ER dataset limits statistical power, making it more 
challenging to detect subtle effects and interactions. 
Fourth, participants’ adherence to the daily HRV biofeed-
back protocols may have varied, and differences in train-
ing engagement or compliance could influence the 
observed intervention effects. Fifth, structural differences 
between younger and older adult brains (e.g., age-related 
atrophy or enlarged ventricles) may not be fully accounted 
for by standard preprocessing pipelines, potentially intro-
ducing systematic biases in image registration and align-
ment. Future work could use age-specific templates or 
advanced normalization methods to better accommodate 
these structural differences. Sixth, as we focused here on 

older adults in the range of 50–85 years old, it is possible 
that the specific age range may impact the results of old 
versus young group comparisons. Further, differences in 
imaging parameters and preprocessing pipelines could 
introduce technical variability in characterizing relation-
ships between fMRI and peripheral physiological signals. 
Future studies employing multi-modal imaging (e.g., near-
infrared spectroscopy or arterial spin labeling) and longitu-
dinal follow-ups could provide a more comprehensive 
view of how autonomic regulation interventions influence 
cerebrovascular function and healthy brain aging over 
time. Finally, for accurate HRV quantification (Section 3.1), 
higher sampling rates for PPG recordings (e.g., ≥250 Hz) 
can help to capture the fine temporal resolution needed for 
precise inter-beat interval detection (Kwon et  al., 2018). 
While the NKI physiological sampling rate was only 
62.5  Hz, the HRV results that we find in the NKI data 
appear to follow an expected age-related trend and align 
well with the results of the HRV-ER data, which had a 
higher PPG sampling rate.
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