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Over the last decade, countless discoveries have been made

that have expanded our knowledge of mitochondrial biology,

and more often than not, these discoveries provided

fascinating new insights into the etiology of human disease. For

example, advances in mitochondrial genetics exposed the role

of mitochondrial mutations in cancer progression, and the

discovery of mitophagy highlighted the role of mitochondrial

quality control in Parkinson’s disease. Additional discoveries

underscored the importance of the mTor pathway in aging and

disease, and more recently, the mitochondrial unfolded protein

response was implicated in the regulation of mammalian

lifespan. Some of the most fundamental discoveries though,

were made in the context of mitochondrial fusion and fission.

The balance between these two opposing forces shapes the

mitochondrial population in our cells, and influences

mitochondrial function at every level. Here, we highlight the

basic biology that underlies mitochondrial fusion and fission,

explain how these processes promote human health by solving

a problem that is innate to multifarious organelles, and make a

novel prediction: that fusion and fission are intimately linked to

mitochondrial protein quality control.
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Cellular energy demands and the multiplicity
of mitochondria
Our cells are addicted to energy. Whether it is protein

synthesis, DNA replication, autophagy or signal transduc-

tion, almost every biological process is driven by the

consumption of energy [1�]. To meet this demand, our

cells contain hundreds, or even thousands of mitochon-

dria that fuel our cells with ATP [2]. Since every com-

partment in our cells requires its own energy supply,
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mitochondria are usually distributed throughout the cell

body, not unlike a power grid, to ensure that all demands

are met [1�]. By rewiring this power grid [3] (or in other

words, by changing the location of mitochondria), a cell

can respond to changes in its environment or its own

intrinsic needs; thus, the multiplicity of mitochondria,

combined with their mobility, helps to solve the energy

crisis of our cells.

All multifarious organelles suffer from a
common problem
It is important to realize though, that this solution con-

tains an inherent drawback. Most of us probably know

that mitochondria contain approximately a thousand

unique proteins [4��,5], and that the vast majority of these

proteins are encoded in the nucleus [1�] and imported [6]

into mitochondria after translation. Although these are

rather mundane details, they are actually quite remark-

able, because the logistics required to maintain mitochon-

drial proteomics must be mind-boggling. After all, how

could a cell possibly ensure that each mitochondrion

receives every one of these proteins? Certainly, no cell

can scan hundreds of mitochondria simultaneously for the

presence of a thousand proteins and adjust their concen-

tration in real-time? Especially if these mitochondria are

actively moving along the cytoskeleton and occupy the

farthest corners of our cells. Moreover, these proteins do

not only need to be present, they must be present in the

right stoichiometry to function harmoniously. These con-

siderations highlight a problem that is central to the

biology of all multifarious organelles: the more organelles

you create, the harder it is to control the quality of each

individual unit. And this problem is especially relevant to

mitochondria. After all, mitochondria do not only carry a

large amount of proteins [4��,5], but they are also ex-

tremely abundant and widely dispersed throughout the

cell [7]. Each of these factors makes it difficult to control

protein content across the mitochondrial population. It is

further important to note that the proteome of mitochon-

dria is encoded by the nuclear, as well as the mitochon-

drial genome [1�], adding yet another layer of complexity

to protein homogenization. Fortunately, our cells are able

to solve this problem with the help of mitochondrial

fusion and fission, two opposing forces that seem to have

evolved specifically to promote mitochondrial homoge-

neity [8�,9].

The machinery of mitochondrial dynamics
As mitochondria travel along the cytoskeleton, they fre-

quently collide in an end to end fashion. These collisions
www.sciencedirect.com
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are important events, because they provide mitochondria

with an opportunity to fuse, and create a single contiguous

organelle [8�,9] (Figure 1). Each fusion event requires two

reactions: the first reaction fuses the outer membranes

together, while the second reaction fuses the inner mem-

branes together [8�,9]. These reactions are primarily cata-

lyzed by dedicated GTP-ases that are embedded in the

inner and outer mitochondrial membrane. In mammals, the

mitofusins Mfn1 and Mfn2 regulate fusion of the outer

mitochondrial membrane [10,11], while OPA1 regulates

fusion of the inner mitochondrial membrane [12�,13�].
Genetic ablation or depletion of any of these molecules

strongly inhibits mitochondrial fusion [14,15]. Mitochon-

drial fusion is opposed by mitochondrial fission, a process by

which a single mitochondrion is split into two separate

organelles [16]. In mammals, this process is primarily me-

diated by Drp1, a protein that constricts the mitochondrial

membrane, and promotes mitochondrial scission

[17�,18�,19�]. Mitochondrial fission is further enhanced

by Fis1 [20,21], Mff [22,23], MiD49 and MiD51 [24–26],

which contribute to fission in numerous ways, including the

recruitment of Drp1 to the mitochondrial membrane. To-

gether, the opposing forces of fusion and fission control the

shape, size and number of mitochondria in our cells. If this

balance favors fission, mitochondria are fragmented into

short tubules, or small, spherical organelles [15]. If it favors

fusion though, mitochondria appear elongated, and coalesce

into an extensively interconnected network [15]. Mitochon-

drial dynamics affect more than mere morphology though.

In fact, what is so unique about mitochondrial dynamics, is

that it seems to affect almost every aspect of mitochondrial

biology, including energy production [27�,28��,29��], apo-

ptosis [30–32], mitophagy [33–37], stress resistance [38–40],

mitochondrial movement, mtDNA stability [29��] and the

tolerance of cells to mtDNA mutations [29��]. It is not

surprising then, that genetic disruption of genes involved in

fusion and fission has a pronounced effect on mammalian

health. For example, the ablation of fusion genes results in

embryonic death in mice [41], while less severe disruptions

cause a variety of neuromuscular diseases in humans [8�].
For instance, mutations in OPA1 cause dominant optic

atrophy (DOA) [12�,13�], a disease that is characterized
Figure 1
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by a progressive loss of vision due to the degeneration of

retinal ganglion cells [42]. Ultimately, this degeneration

causes atrophy of the optic nerve and results in premature

blindness. Recent studies further indicate that DOA can be

accompanied by various extra-ocular symptoms, including

hearing loss, mitochondrial myopathy and peripheral neu-

ropathy [42]. Interestingly, mutations in Mfn2 cause a

disease with similar symptoms: Charcot Marie Tooth dis-

ease type 2A (CMT2A) [43��]. CMT2A is primarily char-

acterized by peripheral neuropathy and the loss of sensation

in distal limbs, which is a symptom that DOA patients can

experience as well, although to a greatly lesser degree [42].

Patients that suffer from CMT2A may also display optic

atrophy and mitochondrial myopathy [43��], two additional

symptoms that are seen in patients with DOA as well,

further confirming their common etiology.

Mitochondrial dynamics and content mixing
Initially, it was a little puzzling to find that mitochondrial

fusion and fission affect so many aspects of mitochondrial

biology, because the proteins that drive fusion and fission do

not play a role in all of the pathways they affect. For

example, deletion of Mfn1 and Mfn2 causes a significant

decrease in mtDNA stability [29��]; however, neither Mfn1

nor Mfn2 plays a direct role in mtDNA maintenance. We

think that the solution to this puzzle lies in content mixing, a

basic consequence of mitochondrial dynamics that opti-

mizes mitochondrial homogeneity [27�,29��]. When mito-

chondria fuse, they share their membranes with each other

and create a common matrix and inter-membrane space

[8�]. These compartments contain all the contents of the

original fusion partners, including their lipids, proteins,

DNA and RNA. By mixing these molecules together,

mitochondria can ultimately divide them equally over their

daughter organelles once fission occurs; thus, the net result

of one cycle of fusion and fission, is that the original fusion

partners are replaced by two daughter organelles, which

contain the same amount of proteins as their parents, but

these proteins are now distributed in a homogeneous man-

ner. By repeating these cycles over and over, mitochondria

can homogenize their content across the entire mitochon-

drial population. A cartoon of this process is depicted in
fission
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chondria housed within our cells. Although mitochondria are frequently

tually highly dynamic in nature. Most notably, they undergo continuous
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e to a single yellow organelle. This process is opposed by
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Figure 2. To demonstrate this process experimentally, we

decided to infect fibroblasts with retroviruses that target

CFP, EGFP and dsRed to the mitochondrial matrix. In

WT cells, these fluorophores were distributed over the

mitochondrial population in a relatively homogeneous fash-

ion, so that each mitochondrion displayed a similar color. In

fusion deficient cells though, we noticed that each mito-

chondrion displayed a unique color, indicating that the

fluorophores were less homogeneously distributed. For ex-

ample, some mitochondria displayed a blue color, indicating

an abundance of CFP molecules, and the relative ab-

sence of GFP and dsRed molecules. Other mitochondria

displayed a yellow color, indicating an abundance of GFP

and dsRed molecules, and the absence of CFP mole-

cules. This heterogeneity ultimately resulted in the

‘Christmas lights-like’ patterns seen in fusion deficient

cells. We made similar observations when we monitored

mitochondrial protein heterogeneity with native proteins

[29��]. These observations highlight how important mi-

tochondrial dynamics are to homogenize protein content

across the mitochondrial population, and explain how

fusion and fission can improve the efficiency of every

process that occurs inside mitochondria, without directly

regulating them. Since content mixing seems to be the

primary function of mitochondrial fusion and fission, we

suspect that reduced content mixing is one of the primary

sources of the pathology experienced by patients DOA

and CMT2A. In addition, it is possible that reduced content

mixing contributes to various other diseases that are associ-

ated with abnormal mitochondrial dynamics, including Par-

kinson’s disease, Alzheimer’s disease and Huntington’s

disease [44,45]. Finally, it is important to note that even

WT cells experience some variation in protein content

(Figure 3a). Although this variation is relatively minor, it

is easy to imagine how its cumulative effect over the lifetime

of an organism could have detrimental consequences. For
Figure 2
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example, small variations in the presence of DNA repair

proteins could allow mtDNA mutations to accumulate over

time and thereby contribute to age-related pathology. Mito-

chondria may even experience greater protein heterogeneity

as we age, which would accelerate this process. Although

these considerations explain why mitochondrial fusion and

fission ultimately affect every aspect of mitochondrial

biology, we think there is a special connection between

mitochondrial dynamics and the mitochondrial quality

control. For example, it is already known that mitochondrial

fission plays an important role in mitophagy, a broad term

that generally refers to the selective degradation of dys-

functional mitochondria [46��]. During mitophagy, PINK1

and Parkin label dysfunctional mitochondria for degrada-

tion [47], and mitochondrial fission contributes to this

process by separating damaged segments of mitochondria

from healthy ones [48,49]. Enhanced fission (and reduced

fusion), further allows mitochondrial dynamics to reduce

the size of dysfunctional mitochondria, so that they can be

engulfed by the autophagosome and the lysosome [48,49].

In addition though, we suspect that mitochondrial fusion

and fission are also connected to a second quality control

mechanism, the mitochondrial unfolded protein response

(UPRmt). This fascinating quality control mechanism has

recently hugged the limelight because of its remarkable

effect on organismal lifespan [50��,51,52]. In the paragraphs

below, we would like to explain why we think this connec-

tion exists, how it affects cellular health, and how additional

research in this area may be able to identify new avenues of

treatment for patients that suffer from diseases that are

caused by abnormalities in mitochondrial dynamics.

The mitochondrial unfolded protein response
Every compartment in our cells, including mitochondria,

struggle to maintain protein homeostasis [53]. Fortunately,
fission
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Figure 3

WT Mfn1-/- Mfn1-/- Mfn2-/-
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Increased protein heterogeneity in fusion deficient cells. Each cell line was transfected with 3 retroviruses, each of which carries a single fluorescent

protein that is targeted to the mitochondrial compartment (CFP, EGFP, dsRed). If these proteins are homogeneously distributed over the mitochondrial

population, each mitochondrion would carry equal amounts of blue, green and red fluorescent proteins and display a similar color. On the other hand, if

these proteins are not homogeneously distributed, each mitochondrion would display a different color, due to imbalanced protein content.
mitochondria normally produce misfolded proteins at a

relatively low level, but in times of stress [54,55] (for exam-

ple, when mtDNA is depleted [56], the electron transport

chain is perturbed [57], or oxidative stress intensifies [58]),

misfolded proteins can accumulate and threaten mitochon-

drial health [54]. To prevent this problem, mitochondria rely

on the mitochondrial unfolded protein response (UPRmt) to

stimulate the transcription of genes that alleviate proteotoxic

stress [55,59]. In mammals, this response is stimulated by

two events: the accumulation of misfolded proteins in the

matrix, and the accumulation of misfolded proteins in the

inter-membrane space [60]. Each of these events elicits a

unique response. When misfolded proteins accumulate in

the matrix, they are cut into tiny peptides by the protease

ClpP [60]. These peptides activate two kinases, JNK and

PKR, which ultimately upregulate the integrated stress

response and activate the transcription factor CHOP-10

[61], which regulates the expression of stress-resolving genes

such as mitochondrial proteases and chaperones [54,60,62].

The mitochondrial sirtuin SIRT3 seems to play a similar role

[63]. If misfolded proteins accumulate in the inter-mem-

brane space though, mitochondria respond by activating ER-

a [64], a protein that increases the expression of the HTRA2/

Omi [65] protease and the transcription factor NRF1 [64].

HTRA2/Omi, along with the mitochondrial biogenesis

genes regulated by NRF1 resolves the proteotoxic stress

experienced by inter-membrane space.

Connecting mitochondrial dynamics to the
unfolded protein response
The UPRmt pathway has received an unusual amount

of attention in recent years, because it has been

suggested that the mitochondrial unfolded protein
www.sciencedirect.com 
response is directly linked to the regulation of mam-

malian lifespan [50��,51,52,55,66,67,68��]. The most re-

cent evidence for this exciting connection was made when

a combination of bio-informatics, genetics and molecular

biology revealed that mutations in a gene called Mrps-5 can

extend the lifespan of mice and worms [50��]. Mrps-5
encodes mitochondrial ribosomal protein S5, a relatively

unassuming protein that contributes to the translation of

polypeptides encoded by the mitochondrial genome. It

was subsequently discovered that manipulation of Mrps-5
can reduce the efficiency of mitochondrial translation,

which changes the ratio of proteins that are derived from

the nuclear and the mitochondrial genome [50��]. Al-

though this ‘mito-nuclear imbalance’ sounds innocuous,

it actually deprives many proteins of their usual binding

partners, which compromises their stability and

activates the mitochondrial unfolded protein response.

This chronic activation of the unfolded protein

response (which was dubbed mitohormesis), increased

the lifespan of mice with Mrps-5 mutations by >25%

[50��,51,52]. Further experiments even suggested that

the lifespan extending effect of sir2.1, the homolog of

SIRT1 in C. elegans, were partially mediated by the

mitochondrial unfolded protein response [66].

What we can learn in the future and how it can
benefit patients
When you place these observations in the context of

mitochondrial dynamics, you will find several startling

connections. First, the experiments on Mrps-5 demon-

strate that an imbalance in protein content is a powerful

source of proteotoxic stress [50��,51,52]. Excitingly, a

similar imbalance is present in fusion deficient cells
Current Opinion in Genetics & Development 2016, 38:68–74
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[29��] (Figure 3), which suggests that they are likely to suffer

from proteotoxic stress as well. This possibility is further

strengthened by the observation that loss of mitochondrial

fusion decreases mtDNA stability and reduces mtDNA

copy number [29��], which is a potent source of proteotoxi-

city as well. Thus, it is highly likely that mitochondria of

fusion deficient cells contain a large amount of destabilized

proteins. These destabilized proteins could be a powerful

source of mitochondrial dysfunction, and contribute to the

pathology of patients with DOA or CMT2A. In addition, it is

likely that these destabilized proteins would activate

UPRmt, and that this activation would help to suppress

disease caused by abnormalities in mitochondrial dynamics.

It will be extremely important to test this possibility, be-

cause if this hypothesis is correct, it may be possible to

activate this pathway further as an auxiliary tool to improve

the lives of patients. Moreover, there are various other

diseases that are associated with abnormalities in mitochon-

drial dynamics, including Parkinson’s disease, Alzheimer’s

disease and Huntington’s disease. It is tempting to speculate

that a similar rationale applies to these diseases. In the

context of therapy, it is also important to point out that

misfolded proteins inside the mitochondrial compartment

are a powerful activator of mitophagy [69], which under-

scores how intimately mitochondrial dynamics and mito-

chondrial quality control are related. Understanding these

relationships in greater detail, and ultimately exploiting

them, holds great promise for the treatment of diseases that

are caused by mitochondrial dysfunction. The most exciting

aspect of the relationship between mitochondrial dynamics

and the UPRmt though, is that it can be tested in a fairly

quick and straightforward  manner. For example, in one

experiment, the UPRmt of fusion deficient cells could be

disrupted, while in another experiment one could disrupt

mitochondrial fusion and fission in UPRmt deficient cells.

We hope that this review will inspire researchers to perform

these experiments and contribute to future efforts to under-

stand the biological basis of mitochondrial disease.
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