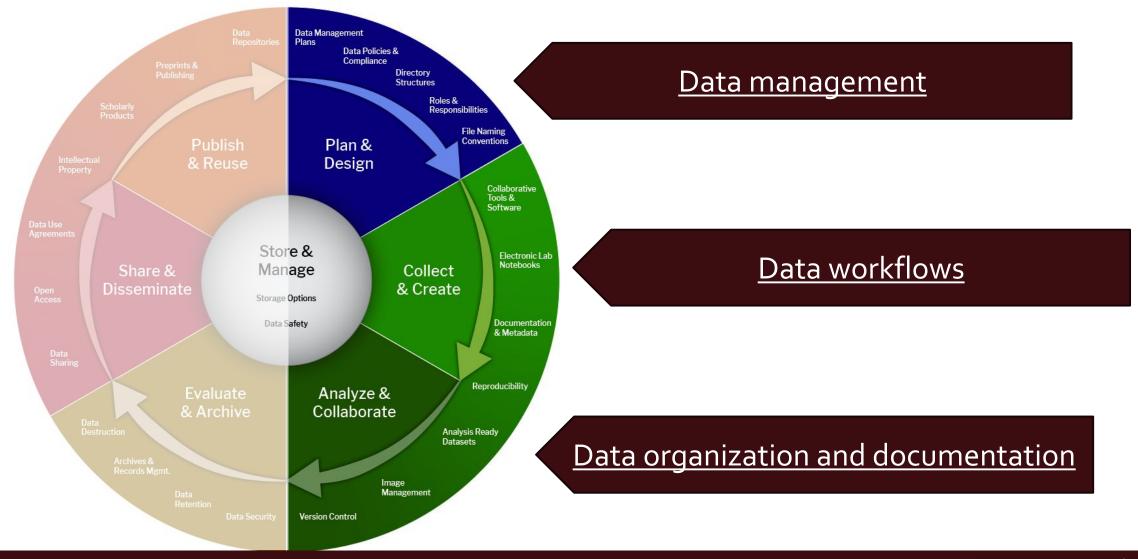

PARTI

Best Practices: Data and Project Management


Calley E. Fisk calleyfi@usc.edu

Part I: Overview

Planning for Data Management

Roadmap your data product prior to beginning your project

Best practice to follow **FAIR** principles

Accessibility

Interoperability

Reuse

Data assigned unique and persistent identifier

Data described with rich metadata

Metadata clearly and explicitly include identifier

Data are registered in a searchable resource (e.g., ICPSR)

Accessibility

Interoperability

Reuse

Data assigned unique and persistent identifier

Data described with rich metadata

Metadata clearly and explicitly include identifier

Data are registered in a searchable resource (e.g., ICPSR)

Accessibility

Data are retrievable from their identifier using standard communications protocol

Protocol is open, free, and universally implementable

Metadata is accessible, even when data is no longer available

Interoperability

Reuse

https://www.go-fair.org/fair-principles

Data assigned unique and persistent identifier

Data described with rich metadata

Metadata clearly and explicitly include identifier

Data are registered in a searchable resource (e.g., ICPSR)

Accessibility

Data are retrievable from their identifier using standard communications protocol

Protocol is open, free, and universally implementable

Metadata is accessible, even when data is no longer available

Interoperability

Data use is formal, accessible, shared, and applicable language used for knowledge representation

Data uses vocabularies that follow FAIR principles

Data include qualified

references to other (meta)data

Reuse

https://www.go-fair.org/fair-principles

Data assigned unique and persistent identifier

Data described with rich metadata

Metadata clearly and explicitly include identifier

Data are registered in a searchable resource (e.g., ICPSR)

Accessibility

Data are retrievable from their identifier using standard communications protocol

Protocol is open, free, and universally implementable

Metadata is accessible, even when data is no longer available

Interoperability

Data use is formal, accessible, shared, and applicable language used for knowledge representation

Data uses vocabularies that follow FAIR principles

Data include qualified references to other

(meta)data

R

Reuse

Metadata richly described with accurate and relevant attributes

Data are released with clear and accessible data usage license

Data are associated with detailed provenance

Data meet domainrelevant community standards

https://www.go-fair.org/fair-principles

Benefits of Planning & FAIR Principles

Promotes consistent practices

Reduces issues of recall

Compliance with external stakeholders

Good research ethics

Workflow efficiency

Data Management Plans (DMP)

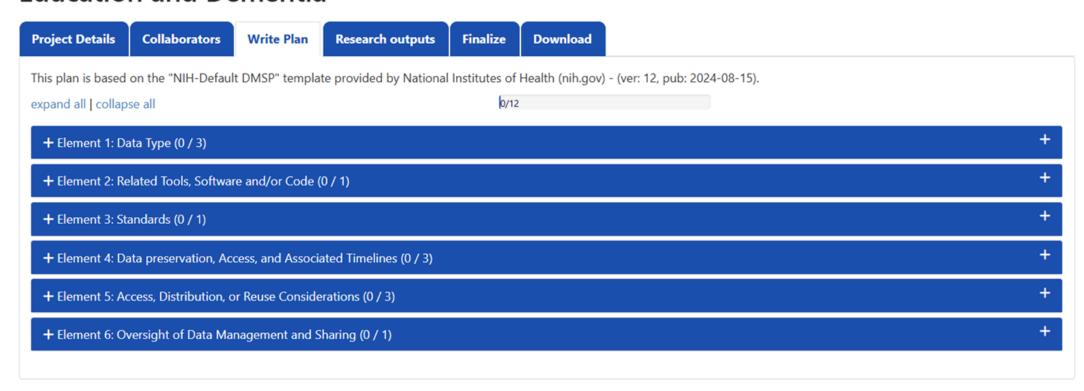
Documentation of the planning process

Data Management Plans (DMP)

Documentation of the planning process

Common information included:

- Description and format of data to be produced and shared
- Description of documentation
- Plans for data formatting and metadata
- Plans for data use and security
- Information on data team members


Dashboard Create Plan Public Plans Funder Requirements About 💄 🌐 🕻 Logout

University of Southern California (usc.edu)

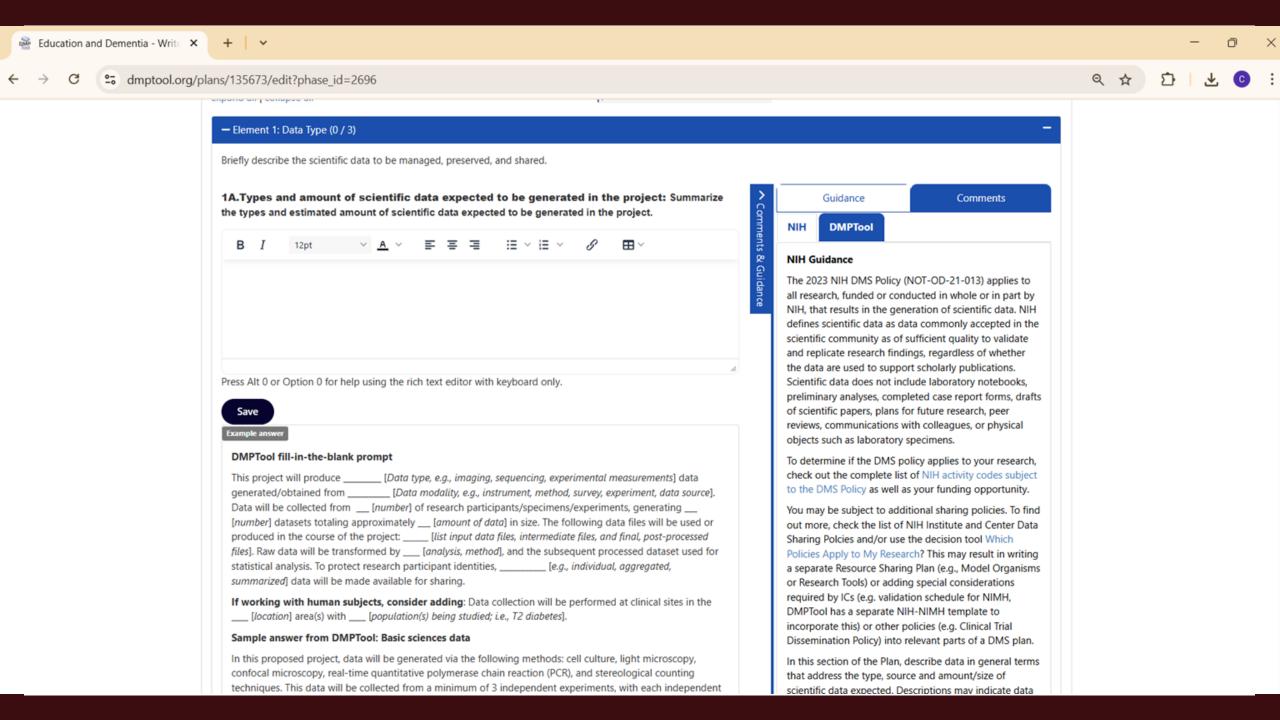
University of Southern California (usc.edu)

■ USC Office of Research

Education and Dementia

Finding Specific Examples

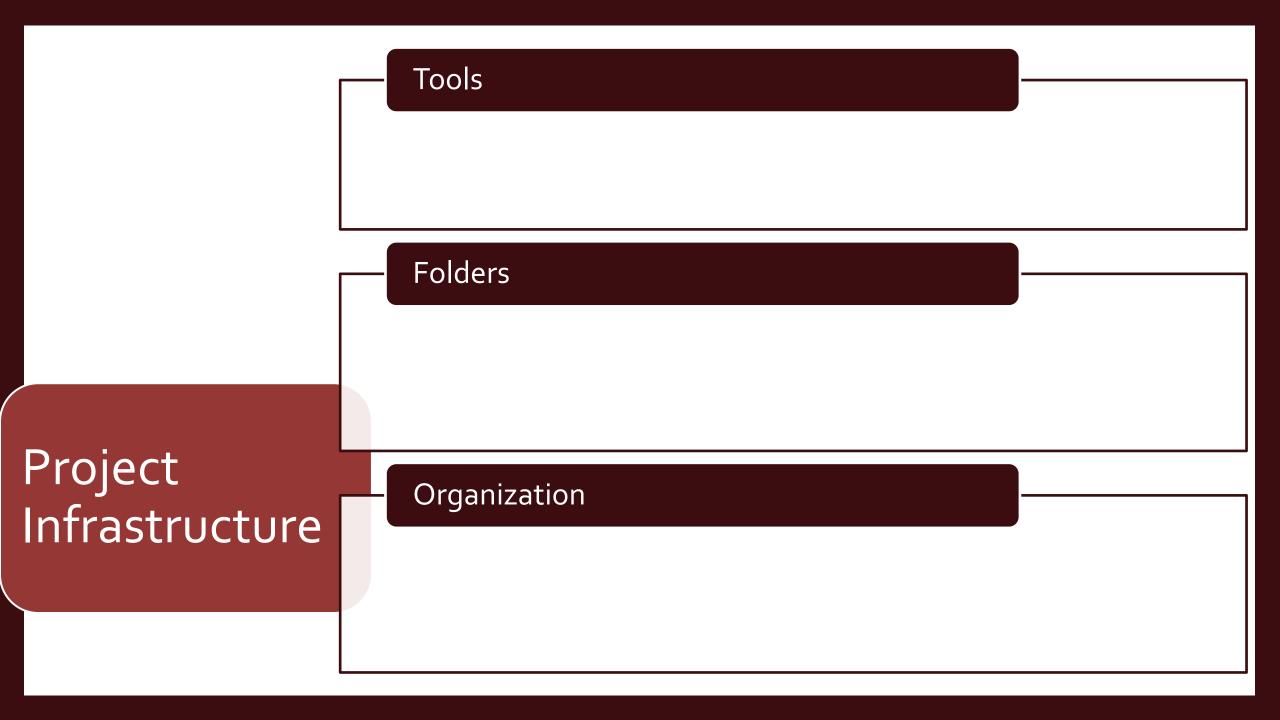
Example: DMPTool Public Plans



Public Plans

Public plans are plans created using the DMP Tool service and shared publicly by their owners. They are not vetted for quality, completeness, or adherence to funder guidelines.

Sort but


Find a plan	Plans (1637)	Soft by.	Featured
Search			
Please enter only letters and numbers.	NIH-Default DMSP	DMP ID:	10.48321/D17 39FCA8B
Clear Search	Impact of autism genetic liability on behavioral reinforcement and accumbal dopamine	Creation date:	06-06-2024
Funder (184) Institution (383)	+ Alexxai Kravitz, Washington University in St. Louis	Language:	English (US)
Language (2)	(wustl.edu)		

Internal Data Workflows

1. Project Infrastructure

2. Team Infrastructure

Tools

What do you need to complete your project?

- Options: Python/SQL, Stata, R, Microsoft Office, etc.
- Considerations: Team expertise and training, external formatting, file types

Folders

Project Infrastructure

Organization

Tools

What do you need to complete your project?

- Options: Python/SQL, Stata, R, Microsoft Office, etc.
- Considerations: Team expertise and training, external formatting, file types

Folders

Where does your project live?

- Options: Dropbox, Google Drive, etc.
- Considerations: storage size, institutional agreements, team access, file types, version control

Project Infrastructure

Organization

Tools

What do you need to complete your project?

- Options: Python/SQL, Stata, R, Microsoft Office, etc.
- Considerations: Team expertise and training, external formatting, file types

Folders

Where does your project live?

- Options: Dropbox, Google Drive, etc.
- Considerations: storage size, institutional agreements, team access, file types, version control

Project Infrastructure

Organization

How do you organize your project folder?

- Options: Create a project skeleton with agreed-upon folder organization
- Considerations: "deep" vs. "shallow" structures, consistency, archive practices

How do you organize your project folder?

Example: CDR Crime Data Project Folder README

Uniform Crime Reports Files USC-CDR Project-Level README

Authors: Calley Fisk (calleyfi@usc.edu)

Last Updated: 7/8/2025 9:49 PM

Project Overview

The Uniform Crime Reports (UCR) data includes annual counts of offenses collected by the FBI Uniform Crime Reporting Program. The data includes counts of murder, robbery, aggravated assault, burglary, larceny, auto theft, and arson. Data are available at the county level and for years 1994 to 2014 and 2016.

Repository Overview

This project directory is organized using the following structure:

HRS Team Folder/Crime/

|--00_README // you are here.

```
I-- 01 overview
        |-- 00_source_reference // original data source materials and web resources
        |-- 01_Crime_Instruction Manual_1994_2016.docx // data manual
        |-- 02_Crime_HRS-CDR_Variables.xlsx // list of USC-CDR variable names
        |-- 03 City-Level Data Information 09242019.docx // notes on city level UCR data
       |-- 04 Fipscode change check 1994 2016.xlsx // notes on county changes from version 1 and 2 data
|--02_processing
       |-- 01_data
               -- 00_original // raw downloaded data, folders by year
               |-- 01 working // folders for working files in stata format
               I-- 02 final // final USC-CDR data files
               |-- 00_README.txt // README on file name changes from original to working data
       |-- 02 scripts
               - archive
               |-- 00 Working Data Creation 1994 2016.do // script for creating working data files
               |-- 01 Master crime_data transformation_1994_2016 // script for processing working data
               |-- 02_rename_geoids_HRS_to_UAS_Crime.do // renaming FIPS codes
               |-- 03_rename_geoids_UAS_to_HRS_Crime.do // renaming FIPS codes
|-- 03 data final
       |-- 01 usc cdr
               |-- Crime_CDR_Documentation_2020-11-07.docx // draft of documentation
               |-- Crime_CDR_Documentation_2020-11-07.pdf
               |-- Crime_County_1994_2014.dta // version 1 data
               |-- Crime County 1994 2016.dta // version 2 data
       -- 02 hrs cdr
               |-- Crime_HRS-CDR_Documentation_2020-11-07.docx // draft of documentation
               |-- Crime HRS-CDR Documentation 2020-11-07.pdf
                |-- Crime_County_1994_2014.sas7bdat
               - Crime County 1994 2016.sas7bdat
               |-- Crime_UAS-CDR_Documentation_2020-12-02.docx // draft of documentation
               |-- Crime UAS-CDR Documentation 2020-12-02.pdf
               |-- Crime_County_1994_2014.dta
               -- Crime County 1994 2016.dta
I-- archive
```


Who does what tasks?

Importance of building teams with appropriate expertise

- Skills: technical, interpersonal, organizational
- Expertise: undergraduate, graduate, post-doc, research scientist

How do they do tasks?

Who does what tasks?

Importance of building teams with appropriate expertise

- Skills: technical, interpersonal, organizational
- Expertise: undergraduate, graduate, post-doc, research scientist

How do they do tasks?

Importance of clear and consistent communication

- Software: Slack, Asana, Trello, etc.
- Balance between day-to-day tasks and major project updates

Who does what tasks?

Importance of building teams with appropriate expertise

- Skills: technical, interpersonal, organizational
- Expertise: undergraduate, graduate, post-doc, research scientist

How do they do tasks?

Importance of clear and consistent communication

- Software: Slack, Asana, Trello, etc.
- Balance between day-to-day tasks and major project updates

Considerations: project timeline, succession planning, consistent scheduling, manager assignments

How do you organize a project workflow?

Example: CDR Shared Project Workflow Diagram

	^			_	'	<u> </u>	**	'	•		
1	README										
2											
3		Who		Data Product	ion		Documentation			Updates	
4	Data Product	Manager	Team	Downloaded	Processing	Finalized (e.g., variable decisions)	Drafted	Reviewed	Specified to Linkable Survey (e.g., HRS and UAS versions)	Update Needed	
5	Decennial Census			Yes 🔻	Completed •	Completed •	Completed •	Completed •	Completed ▼	No ▼	•
6	American Community Survey			Yes ▼	Completed •	Completed •	Completed •	Completed •	Completed ▼	No ▼	•
7	USDA Food Environment and Access			Yes 🔻	Completed •	Completed	Completed •	Completed •	Completed	Update in Progress ▼	
8	FBI Uniform Crime Reports			Yes 🔻	Completed •	Completed	Completed •	Completed •	Completed	Update in Progress ▼	
9	EPA FAQSD PM2.5 and O3			Yes 🔻	Completed •	Completed •	Completed •	Completed •	Completed •	Update in Progress ▼	
.10,	ATMOS			Yes 🔻	Completed •	Completed •	Completed •	In Progress ▼	•	Yes ▼	
11	Nitrogen Dioxide Land Use Estimates			Yes 🔻	Completed •	Completed •	Completed •	Completed •	Completed	No ▼	•
12	Dartmouth Atlas of Health Care			Yes ▼	Completed •	Completed •	Completed •	Completed •	Completed ▼	No ▼	•
13	Area Health Resources File			Yes 🔻	Completed •	Completed •	Completed •	In Progress ▼	Completed ▼	Update in Progress ▼	
14	StreetMap Walkability			Yes 🔻	Completed •	Completed ▼	Completed •	Completed •	Completed ▼	No ▼	•
15	gridMET Weather			Yes 🔻	Completed •	Completed •	Completed •	Completed •	In Progress ▼	Update in Progress ▼	
16	EPA Environmental Quality			Yes 🔻	Completed •	Completed ▼	Completed •	Completed •	In Progress 🔻	No ▼	

Tools and organization system only useful if team is trained and invested

Consider scope of project and experience needed

Data Organization

Data organization decisions depend on:

- What does your data look like and what do you want it to look like
- How will you use your data
- Will your data change overtime

Data Organization

Data organization decisions depend on:

- What does your data look like and what do you want it to look like
- How will you use your data
- Will your data change overtime

Variable Naming Conventions

Version Control

Data Formatting and/or Release

Internal and External Documentation

Create unique identifier consistent with plans for data analysis

If possible, decide on variable naming rules prior to data processing

BE CONSISTENT!

For value coding, also consider missing codes, reverse coding, value labeling, etc.

Create unique identifier consistent with plans for data analysis

If possible, decide on variable naming rules prior to data processing

BE CONSISTENT!

For value coding, also consider missing codes, reverse coding, value labeling, etc.

Example: CDR gridMET Data Naming Conventions

A	В	С	D	Е
1 NAME	DEFINITION	GEOGRAPHY	YEARS	
2	Geographic Identifiers			
3 LINKCEN2010	geographic identifier	varies	all	
4	Heat Index Monthly Average Count by Lev	/el		
5 m100	Number of level 0 heat index (no hazard) days in month	tract	annual 1979-2023	
6 m101	Number of level 1 heat index (caution) days in month	tract	annual 1979-2023	
7 m102	Number of level 2 heat index (extreme caution) days in month	tract	annual 1979-2023	
8 m103	Number of level 3 heat index (danger) days in month	tract	annual 1979-2023	
9 m104	Number of level 4 heat index (extreme danger) days in month	tract	annual 1979-2023	
10 m110	Percent of level 0 heat index (no hazard) days in month	tract	annual 1979-2023	
11 m111	Percent of level 1 heat index (caution) days in month	tract	annual 1979-2023	
12 m112	Percent of level 2 heat index (extreme caution) days in month	tract	annual 1979-2023	
13 m113	Percent of level 3 heat index (danger) days in month	tract	annual 1979-2023	
14 m114	Percent of level 4 heat index (extreme danger) days in month	tract	annual 1979-2023	
15				
16				

Create unique identifier consistent with plans for data analysis

If possible, decide on variable naming rules prior to data processing

BE CONSISTENT!

For value coding, also consider missing codes, reverse coding, value labeling, etc.

Example: CDR gridMET Data Naming Conventions

A	В	С	D	Е
NAME	DEFINITION	GEOGRAPHY	YEARS	
2	Geographic Identifiers			
LINKCEN2010	geographic identifier	varies	all	
4	Heat Index Monthly Average Count by Lev	/el		
5 m100	Number of level 0 heat index (no hazard) days in month	tract	annual 1979-2023	
6 m101	Number of level 1 heat index (caution) days in month	tract	annual 1979-2023	
7 m102	Number of level 2 heat index (extreme caution) days in month	tract	annual 1979-2023	
8 m103	Number of level 3 heat index (danger) days in month	tract	annual 1979-2023	
9 m104	Number of level 4 heat index (extreme danger) days in month	tract	annual 1979-2023	
l0 m110	Percent of level 0 heat index (no hazard) days in month	tract	annual 1979-2023	
1 m111	Percent of level 1 heat index (caution) days in month	tract	annual 1979-2023	
2 m112	Percent of level 2 heat index (extreme caution) days in month	tract	annual 1979-2023	
l3 m113	Percent of level 3 heat index (danger) days in month	tract	annual 1979-2023	
m114	Percent of level 4 heat index (extreme danger) days in month	tract	annual 1979-2023	
15				
16				

m100tr197901...m100tr202301

Create unique identifier consistent with plans for data analysis

If possible, decide on variable naming rules prior to data processing

BE CONSISTENT!

For value coding, also consider missing codes, reverse coding, value labeling, etc.

Example: CDR gridMET Data Variable Labeling Script

```
**# Step 3. Label Variables
                                                                                                  * month and year
                                                                                                  if strpos("'var'", "'year'01") > 0 {
⊟foreach file in `files' {
                                                                                                      local lab4 = "January `year'"
                                                                                                  if strpos("`var'", "`year'02") > 0 {
     * extracts the year from the filename
                                                                                                      local lab4 = "February 'year''
     local year = substr(`"`file'"', 3, 4)
                                                                                                  if strpos("'var'", "'year'03") > 0 {
     * heat index files
                                                                                                      local lab4 = "March `year'"
     if strpos("`file'", "hi") > 0 {
                                                                                                  if strpos("'var'", "'year'04") > 0 {
                                                                                                     local lab4 = "April `year'"
         foreach var of varlist m1* {
                                                                                                  if strpos("`var'", "`year'05") > 0 {
              * number of days vs. percent of days
                                                                                                      local lab4 = "May `year'"
              if strpos("`var'", "m10") > 0 {
                  local lab1 = "Number of "
                  local lab3 = "days in "
                                                                                                      local lab4 = "June `year''
             if strpos("`var'", "m11") > 0 {
                                                                                                  if strpos("'var'", "'year'07") > 0 {
                  local lab1 = "Percent of days at "
                                                                                                      local lab4 = "July `year'"
                  local lab3 = "in "
                                                                                                  if strpos("'var'", "'year'08") > 0 {
                                                                                                      local lab4 = "August `year'"
              * heat index levels
                                                                                                  if strpos("`var'", "`year'09") > 0 {
              if strpos("`var'", "0tr") > 0 {
                                                                                                      local lab4 = "September `year'"
                  local lab2 = "level 0 heat index (no hazard) "
                                                                                                  if strpos("`var'", "`year'10") > 0 {
              if strpos("'var'", "1tr") > 0 {
                                                                                                      local lab4 = "October `year'"
                  local lab2 = "level 1 heat index (caution) "
                                                                                                  if strpos("`var'", "`year'11") > 0 {
              if strpos("`var'", "2tr") > 0 {
                                                                                                      local lab4 = "November `year''
                  local lab2 = "level 2 heat index (extreme caution) "
                                                                                                  if strpos("`var'", "`year'12") > 0 {
              if strpos("`var'", "3tr") > 0 {
                                                                                                      local lab4 = "December `year'
                  local lab2 = "level 3 heat index (danger) "
                                                                                                  label variable `var' "`lab1'`lab2'`lab3'`lab4'"
              if strpos("`var'", "4tr") > 0 {
                                                                                                  macro drop lab1 lab2 lab3 lab4
                  local lab2 = "level 4 heat index (extreme danger) "
```

Version Control

Identify what a "version" means for your project

Add version indicators and description of change

Keep a change log to track data lineage

Example: CDR Census Data Version Change Log

Version	Version Note	Years	Geographies
1		Census: 1990, 2000, 2010	State, county, tract
		ACS 5-yr: 2008-12 and 2012-	
		16	
2	Updates ACS 5-year estimates for 2005-	Census: 1990, 2000, 2010	State, county, tract
	09, 2006-10, 2007-11, 2009-13, 2010-14,	ACS 5-yr: 2005-2009 to 2014-	
	2011-15, 2013-17 and 2014-18.	2018	
3	Updates ACS 5-year estimates to 2021,	Census: 1990, 2000, 2010	State, CBSA,
	adds ACS 1-year estimates to 2021,	ACS 5-yr: 2005-2009 to 2017-	county, census tract
	reports ACS data at the CBSA level	2021	
	- Inflation-adjusted to 2021 dollars	ACS 1-yr: 2006 to 2021	State, CBSA, county
	- County change adjusted to 2020		
	- Corrections made to the variables %		
	males 65+ living alone and % females		
	65+ living alone		

Data Formatting and/or Release

Differentiate filenames for internal and external releases

Coordinate with external stakeholders about expectations for data release

Choose data format that coincides with needs for accessibility and metadata

Track data releases

Data Formatting and/or Release

Differentiate filenames for internal and external releases

Coordinate with external stakeholders about expectations for data release

Choose data format that coincides with needs for accessibility and metadata

Track data releases

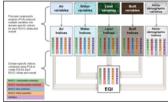
Example: CDR Census Data Dissemination Overview

		Version		Upload	
Study	Upload Date	Number	Who	Location	Delivery Note
MICDA	March 2023	2		SFTP	Error estimate files are not included for
					dissemination
	June 2024	3		Dropzone	Error estimate files are included for dissemination
HRS	Dec 2018	1			
	Nov 2020	2		SFTP	Error estimate files are not included for
					dissemination
	Feb 2025	3		Dropbox	Error estimate files are included for dissemination
UAS	Aug 2020	2		Google	Error estimate files are not included for
				drive	dissemination
	May 2024	3		Google	Error estimate files are included for dissemination
				drive	

Internal and External Documentation

Internal documentation can cover multiple levels of project

Internal documentation should be revisited frequently


Example: CDR Environmental Quality Index Data Acquisition and Management Documentation

Overview

The Environmental Protection Agency Environmental Quality Index (referred to as EPA-EQI in this document) presents data in five domains: air, water, land, built, and sociodemagraphic environments to provide a county-by-county and of overall environmental equity across the entire U.S. The EQI helps researchers better understand how health outcomes relate to cumulative environmental exposures that typically are viewed in isolation. The dataset is produced and managed

by the United States Environmental Protection Agency.

The original EPA-EQI dataset provides separate EQI values for each of the five domains (air, water, land, sociodemographic, and built environment). EQI values are generated using principal component analysis (PCA) on a set of selected data from multiple sources. For an overview on the data sources used to create domain-specific EQI values, refer to the EPA-EQI PCA VARIABLE SOURCE REFERENCE file in the \Additional Additional Reference folder. The overall EQI is created using the five domain-specific indices.

Original Data Format

Original data is provided in tabular format as CSV (.csv) files. Each data file provides estimates for the given variable for the given year range for each county in the United States.

New data files must be manually downloaded and may be retrieved here. Refer to the DOWNLOADING THE ORIGINAL DATA section in this document for instructions for manual download.

As of November 2023, data is available for 2000-2005 and 2006-2010. Data appears to be released every five years; the most-recent data release (2005-2010 data) occurred in September 2020. Based on the previous release schedule, the next data release is expected to occur in September 2025.

Dataset	Release Date
2000-2005	September 2014
2006-2010	September 2020
2011-2015 (expected)	September 2025

Variables (Final Data)

For information on variables derived from the EPA-EQI dataset, refer to the EPA-EQI VARIABLE REFERENCE document.

	Variable Series	Description
	XXX	2010 county FIPS code
[eq series	overall EQI
[ai series	air EQI
	wa series	water EQI
	la series	land EQI
	sd series	sociodemographic EQI
[be series	built environment EQI

In addition to the sequence identifier, parameter-based variables include extensions to specify the geography and year range. Therefore, parameter-based variables are named based on the following convention:

[variable][geography code][8-digit year range]

For example, data on overall EQI from 2000-2005 would be given the variable name eqco2000.

Downloading the Original Data

New EPA files must be manually downloaded from the <u>EPA-EQI Website</u>. Data from the EPA-EQI website is stored as a series of files for each <u>year</u> range for the data. The user should download the .csv file associated with the final EQI data and store that file in the /ORIGINAL base folder. The user should NOT create folders within the /ORIGINAL base folder. Based on previous data releases, there does not appear to be a standard naming convention for final EQI dataset .csv files; filenames for previous final EPA-EQI .csv files are listed below for reference.

- 2000-2005 EPA-EQI File: Eqi_results_2013JULY22.csv
- 2006-2010 EPA-EQI File: 2006_2010_EQI_2Jan2018_VC.csv

It is recommended that the user also download all files associated with a newly released data year range and store all files associated with a new year range of data in a dedicated folder in the /ADDITIONAL REFERENCE folder.

Based on the previous release schedule, the next data release is expected to occur in September 2025.

Using the Data Cleaning Script

The spatial aggregation R script ERARGL CLEAN, located in the /WORKING folder, re-organizes and renames data from the original EPA-EQI dataset. Running the script will output a set of two files with identical content but using different storage formats (.cs.vand.d.tga) for each year range to the /Final. folder.

The data cleaning R script ERAROLCUSM is organized into three sections: INTRODUCTION AND OVERVIEW, USER INPUTS, and DATA MANAGEMENT. The user SHOULD NOT EDIT any code in the data cleaning script outside of specifying user inputs in the USER INPUTS section.

The user should proceed through the code in the following steps:

- 1. In the USER INPUTS section:
 - Set the working directory. The working directory should point to the location of the /EPA-EQI folder on the user's machine.
- 2. Run the code in the DATA MANAGEMENT section.

Script Runtime

 \Box

Running the EPAROL CLEAN script takes a few seconds.

R and Package Versions

As of November 2023, the ERACO_CLEAN script runs successfully using R version 4.3.1 (Beagle Scouts) and using the following package versions.

Package	Version	Use in Script
foreign	0.8.85	write .dta files

Internal and External Documentation

For external documentation, amount and quality matters

External documentation often includes

- 1. Project information
- 2. Data definitions and codebook
- 3. Metadata
- 4. Suggested citations
- 5. Code for data management
- 6. Version information

Example: CDR Environmental Quality Index Data Documentation

EDA FOLESIA

USC Contextual Data Resour

Suggested Citation

Jennifer Ailshire, Kate Vavra-Musser, Calley E. Fisk. 2025. Contextual Data Resource (CDR): United States Environmental Protection Agency Environmental Quality Index Files by County, 2000/05 and 2006/10. Los Angeles, CA: USC/UCLA Center on Biodemography and Population Health.

Data Sources

United States Environmental Protection Agency (EPA). Environmental Quality Index (EQI), https://www.epa.gov/healthresearch/environmental-quality-index-eqi

Dataset Overview

The US Environmental Protection Agency Environmental Quality Index (EQI) Files provide a snapshot of overall environmental quality using principal component analysis on a set of selected data in five domains: air, water, land, built, and sociodemographic environments. Data are available at the county level and includes an overall EQI value and EQI values for each of the five domains. EQI values are provided as 5-year estimates, and data are available for 2000-2005, and 2006-2010.

Data Summary

Dataset Name: Environmental Quality Index (EQI) Files
Data Source: United States Environmental Protection Agency (EPA)
Data Source URL: https://www.epa.gov/healthresearch/environmental-quality-index-cet/

Data Collection Method: Data from multiple primary sources compiled by the EPA. Years Collected: Final 5-year estimates are provided for 2000-2005 and 2006-2010. Domain-specific measures include measures from specific years between 2000 and 2010. Geographic Level: County; CDR data uses the 2010 county boundaries to be comparable across the years.

Geographic Coverage: EQI Files cover the contiguous U.S, Alaska, and Hawaii.

Technical Information about Environmental Quality Index

The EQI principal components analysis uses multiple variables to create domain-specific EQI indices. These indices are further combined using principal components analysis to estimate overall EOI values.

→ Variable List Years Geographic Identifiers 2010 County FIPS code (5 digits: 1-2 state, 3-5 county) Overall EQI County Estimate Overall EQI 2000-2005 2006-2010 Domain-Specific EOI County Estimates Air EOI 2000-2005 2006-2010 2000-2005 Built Environment EQI County 2006-2010 Land EOI 2000-2005 County 2006-2010 Sociodemographic EQI 2000-2005 2006-2010 2000-2005 Water EQI County 2006-2010

Page 2

PARTI

Q & A

Thank you!

Calley E. Fisk calleyfi@usc.edu

