

Lori M. Hunter Director, Institute of Behavioral Science Co-Director, Center for Aging, Climate, and Health (CACHE) Professor of Sociology

Prepared for Cross-Network Meeting to Advance Research on Aging, Health, & Place

Center for Aging, Climate & Health

- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

SCIENCE ADVANCES | RESEARCH ARTICLE

PUBLIC HEALTH

Ambient outdoor heat and accelerated epigenetic aging among older adults in the US

Eun Young Choi*, Jennifer A. Ailshire

Copyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.

Article

Weather Woes? Exploring Potential Links between Precipitation and Age-Related Cognitive Decline

Jessica Finlay 1,*, Anam Khan 1,2, Carina Gronlund 1, Ketlyne Sol 3, Joy Jang 1, Robert Melendez 1, Suzanne Judd 4 and Philippa Clarke 1,2

The Impact of Natural Hazards on Older Adult Health: Lessons Learned From Hurricane Maria in Puerto Rico

Part of: Hurricanes Collection

Published online by Cambridge University Press: 02 November 2021

Elizabeth L. Andrade, Megan Jula, Carlos E. Rodriguez-Diaz, Lauren Lapointe, Mark C. Edberg, Maria I. Rivera and Carlos Santos-Burgoa

Show author detail

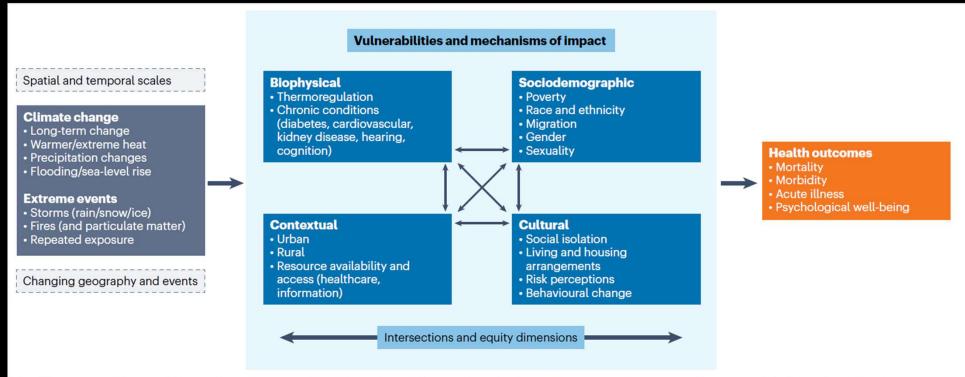
International Journal of Disaster Risk Science (2024) 15:213-225 https://doi.org/10.1007/s13753-024-00548-8

www.ijdrs.com www.springer.com/13753

ARTICLE

Extreme Weather Disruptions and Emergency Preparedness Among Older Adults in Ohio: An Eight-County Assessment

Smitha Rao¹ · Fiona C. Doherty¹ · Anthony Traver¹ · Marisa Sheldon² · Emma Sakulich³ · Holly Dabelko-Schoeny¹


JOURNAL ARTICLE

Health Outcomes After Disaster for Older Adults With Chronic Disease: A Systematic Review •

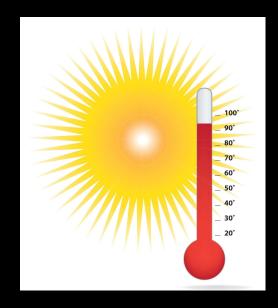
Sue Anne Bell, PhD, FNP-BC 🗷, Jennifer Horowitz, MA, Theodore J Iwashyna, MD, PhD

The Gerontologist, Volume 60, Issue 7, October 2020, Pages e535–e547,

nature climate char	ge
Review article	https://doi.org/10.1038/s41558-024-02156-2
	of for ageing and health es in a changing climate

Fig. 2| **Framework for studying ageing, climate and health.** Vulnerabilities and mechanisms of impact may interact, and intersect with dimensions of equity, to influence health outcomes in older adults due to climate change and extreme weather events.

- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

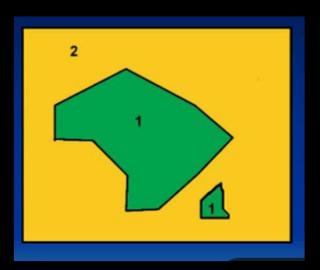

SCIENCE ADVANCES | RESEARCH ARTICLE

PUBLIC HEALTH

Ambient outdoor heat and accelerated epigenetic aging among older adults in the US

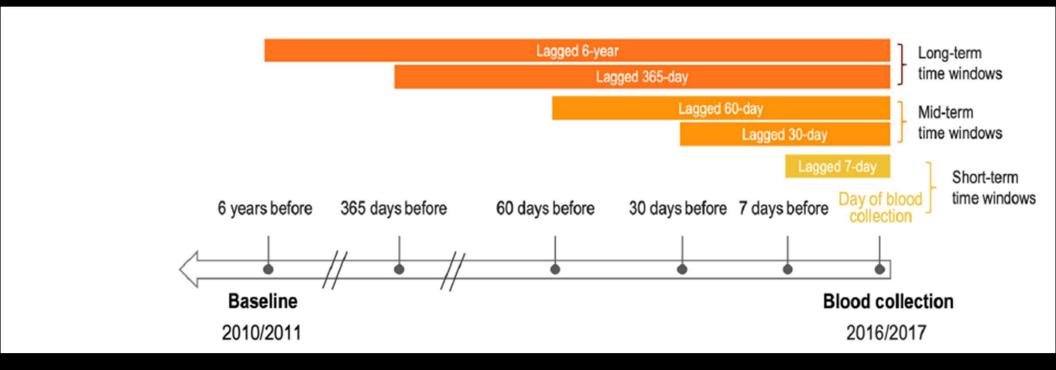
Eun Young Choi*, Jennifer A. Ailshire

Copyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.



gridMet

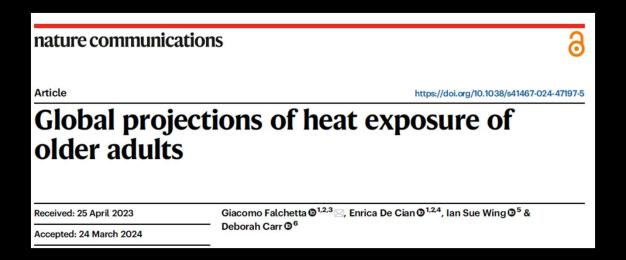
- gridMet
- PRISM, Oregon State University +
- 4 km² grid
- 1979 "yesterday"
- Daily, max/min, temp & humidity



- calculated Heat Index value, NWS
 - 4 categories, thresholds
- link to census tracts
- area-weighted average
- Integrated every respondent for 2010-2016

Temporal Scale

Exposure


Choi & Ailshire (2025)

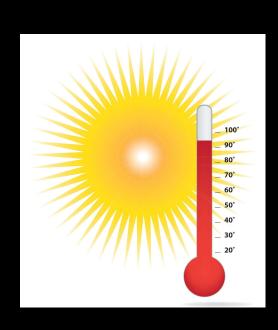
Other Measurements / Variables

Combination of threshold and duration

ID	Indicator name	Definitions	Units
SU25	Summer days	Annual count when TX (daily maximum) > 25°C	Days
ID0	Ice days	Annual count when TX (daily maximum) < 0°C	Days
TR20	Tropical nights	Annual count when TN (daily minimum) > 20°C	Days
FD0	Frost days	Annual count when TN (daily minimum) < 0°C	Days
TXx	Max Tmax	Annual maximum value of daily maximum temp	°C
TXn	Min Tmax	Annual minimum value of daily maximum temp	°C
TNx	Max Tmin	Annual maximum value of daily minimum temp	°C
TNn	Min Tmin	Annual minimum value of daily minimum temp	°C
TX90p	Warm days	Percentage of days when TX > 90th percentile	%
TX10p	Cool days	Percentage of days when TX < 10th percentile	%
TN10p	Cool nights	Percentage of days when TN < 10th percentile	%
TN90p	Warm nights	Percentage of days when TN > 90th percentile	%
GSL	Growing season length	Annual (1 Jan-31 Dec in NH) count between first span of at least 6 days with TG > 5°C and first span after 1 July of 6 days with TG < 5°C	Days
DTR	Diurnal temperature range	Annual mean difference between TX and TN	°C
WSDI	Warm spell duration indicator	Annual count of days with at least 6 consecutive days when TX > 90th percentile	Days
CSDI	Cold spell duration indicator	Annual count of days with at least 6 consecutive days when TN < 10th percentile	Days

Brown et al 2010

CMIP6 projections at high-resolution



CMIP

- Coupled Model Intercomparison Project (CMIP6)
- 1983-2016
- Chronic & acute exposure
- Chronic:
 - Annual cooling degree days above 24°C
- Acute:
 - annual # hot days max temp >27.5°C and 95th percentile of the
 20y daily max temp

CHIRTS

- Climate Hazards InfraRed Temperature with Stations (CHIRTS-daily)
 - UCSB Climate Data Center
- Global
- Daily
- Min/max temperature
- 1983-2016

How decide? Collaborate Coverage Resolution Literature Outcome, mechanisms → measures

Weather / Climate Data

- Climate Hazards InfraRed Precipitation with Stations (CHIRPS)
- 25+ year, 1981 ...
- Quasi-global
- Satellite imagery + station data
- Daily precipitation
- 0.05° gridded

Measurements / Variables

RX1day	Max 1-day precipitation amount	Annual maximum 1-day precipitation	mm
RX5day	Max 5-day precipitation amount	Annual maximum consecutive 5-day precipitation	mm
SDII	Simple daily intensity index	Annual total precipitation divided by the number of wet days (defined as PRCP >= 1.0 mm) in the year	mm day ⁻¹
R10	Number of heavy precipitation days	Annual count of days when PRCP >= 10 mm	Days
R20	Number of very heavy precipitation days	Annual count of days when PRCP >= 20 mm	Days
R25	Number of days above 25 mm	Annual count of days when PRCP ≥ 25 mm, 25 is user-defined threshold	Days
CDD	Consecutive dry days	Maximum number of consecutive days with RR < 1 mm	Days
CWD	Consecutive wet days	Maximum number of consecutive days with RR ≥ 1 mm	Days
R95p	Very wet days	Annual total PRCP when RR > 95th percentile	mm

Brown et al 2010

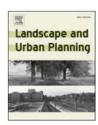
How decide?

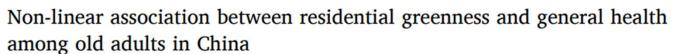
collaborate; literature; outcome; mechanism

Temporal Scale

Annual? Growing season?

Weather / Climate Data


Landscape and Urban Planning 223 (2022) 104406


Contents lists available at ScienceDirect

Landscape and Urban Planning

journal homepage: www.elsevier.com/locate/landurbplan

Research Paper

Baishi Huang ^{a,b,c}, Zeyi Yao ^a, Jamie R. Pearce ^d, Zhiqiang Feng ^d, Andrew James Browne ^e, Zehan Pan ^f, Ye Liu ^{a,b,c,*}

Normalized Difference Vegetation Index (NDVI)

Science Data

Earth Syst. Sci. Data, 15, 4181–4203, 2023 https://doi.org/10.5194/essd-15-4181-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022

Muyi Li^{1,2,3,★}, Sen Cao^{1,2,3,★}, Zaichun Zhu^{1,2,3}, Zhe Wang^{1,2,3}, Ranga B. Myneni⁴, and Shilong Piao^{2,5,6}

¹School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China

²Institute of Carbon Neutrality, Peking University, Beijing 100871, China

³Key Laboratory of Earth Surface System and Human–Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen 518055, China

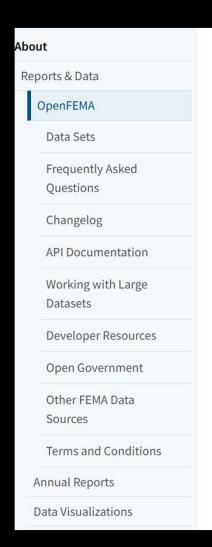
⁴Department of Earth & Environment, Boston University, Boston, MA 02215, USA

⁵Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences,

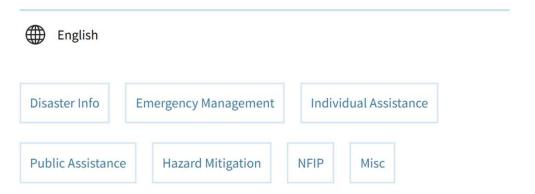
Peking University, Beijing 100871, China

⁶State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

★These authors contributed equally to this work.



- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary



- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

Disaster Data

OpenFEMA Data Sets

This page is intended to be a one stop shop for OpenFEMA—FEMA's data delivery platform which provides datasets to the public in open, industry standard, machine-readable formats. Datasets are available in multiple formats, including downloadable files and through an easily digestible Application Programming Interface (API). Each page includes information about the specific dataset, links to downloadable files, a data dictionary describing each field, and an endpoint link (if applicable for those datasets available via the API).

For additional information regarding API usage, please see the <u>Developer Resources</u> and the <u>OpenFEMA API Documentation</u>.

Disaster Information

Dataset Name	OpenFEMA API
Declaration Denials	<u>V1</u>
Disaster Declarations Summaries	<u>V2</u>
FEMA Web Declaration Areas	<u>V1</u>
FEMA Web Disaster Declarations	<u>V1</u>
FEMA Web Disaster Summaries	<u>V1</u>
Mission Assignments	<u>V2</u>

Center for Emergency Management and Homeland Security

iversity 👚

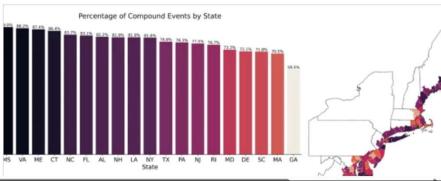
SHELDUS

Register/Log in

How to

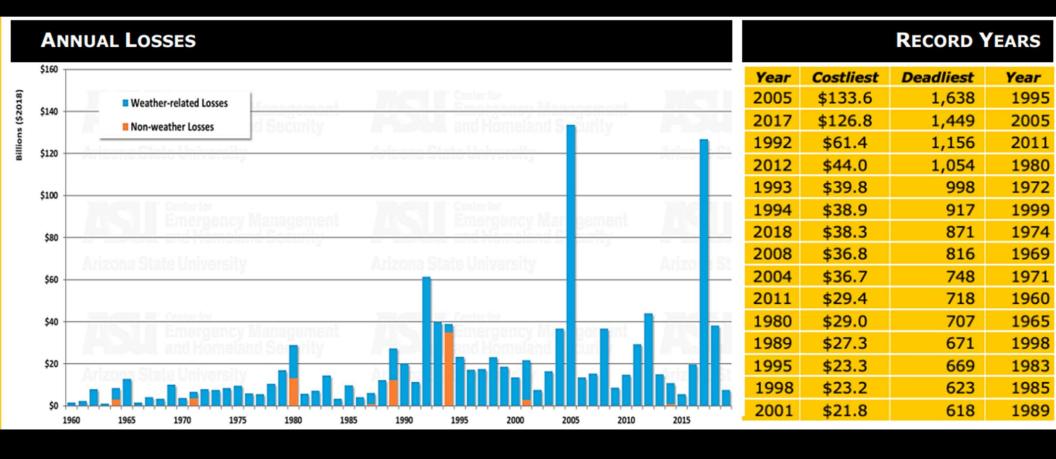
Reports

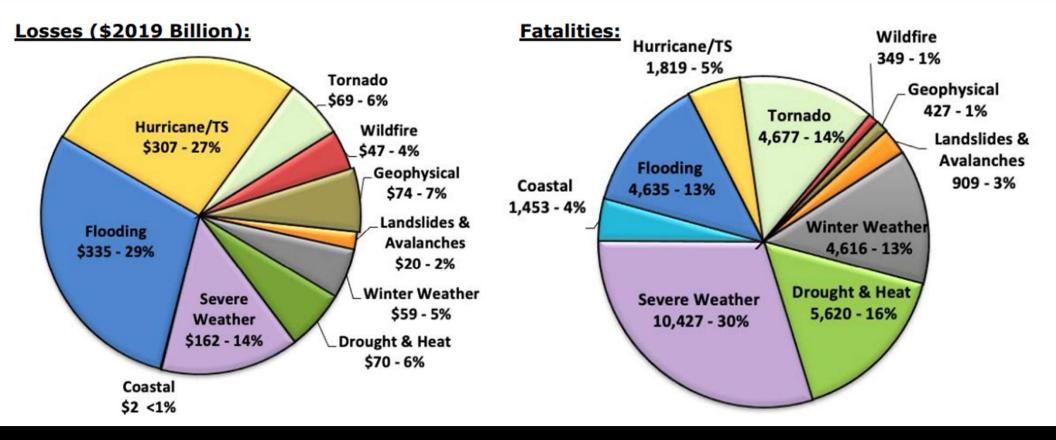
Community


Metadata

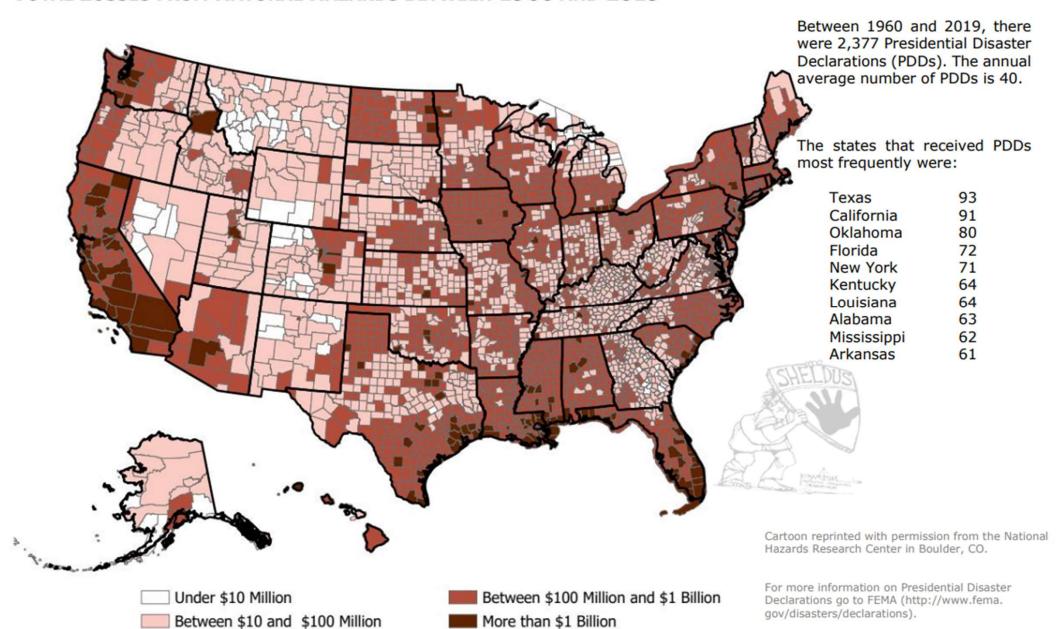
FAQ

Contact




SHELDUS can be searched for the following hazard types:

- 1. Avalanche
- 2. Coastal
- 3. Drought
- 4. Earthquake
- 5. Flood
- 6. Fog
- 7. Hail
- 8. Heat
- 9. Hurricane/Tropical Storm
- 10. Landslide
- 11. Lightning
- 12. Severe Thunderstorm
- 13. Tornado
- 14. Tsunami/Seiche
- 15. Volcano
- 16. Wildfire
- 17. Wind
- 18. Winter Weather


- County scale
- 1960–2023 ...
- Injuries, fatalities
- Property, crop losses

COSTLIEST AND DEADLIEST HAZARDS

TOTAL LOSSES FROM NATURAL HAZARDS BETWEEN 1960 AND 2019

Same issues ...

- Measurement
- Temporal scale
- Spatial scale

- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

- Research Examples
- Weather / climate data
- Disaster data
- SEDAC, CACHE
- Summary

SEDAC

Socioeconomic Data and Applications Center

NASA's Socioeconomic Data and Applications Center (SEDAC) focuses on archiving and distributing data related to human interactions in the environment. SEDAC synthesizes Earth science and socioeconomic data and information in ways useful to a wide range of decision-makers and other applied users, and seeks to improve access to and use of key socioeconomic and interdisciplinary data that are or can be integrated with remote sensing data.

SEDAC develops and maintains extensive fundamental data on human settlements, infrastructure, and population that underpin many different science and application areas. LOCATION

MANAGER

Palisades, NY

Alex de Sherbinin

View All People

FOUNDED

1994

PARTNERS

CIESIN, Columbia

University d

Data V Topics V

Learn ·

Centers >

Engage v

About ~

News & Events

Home / News / Data From SEDAC Are Available Again In Earthdata Search

Data From SEDAC Are Available Again in Earthdata Search

SEDAC data became unavailable almost two months ago. Today, that status has changed, and all SEDAC data are accessible through Earthdata Search.

Center for Aging, Climate & Health

CACHE improves understanding of the public health consequences of environmental conditions and change of the 21st century

The virtual Center for Aging, Climate, and Health aims to facilitate research and foster collaborations among a wide-range of researchers working at the nexus of aging, health, climate change, and related extreme weather events through targeted interdisciplinary training, information sharing, and investments in research support.

A joint effort led by five population research units

Focus on climate-related health impacts on older adults

Targeted interdisciplinary training and funding

A hub for information and code sharing, and community building

Facilitate research and collaboration through network activities

Contact Us

Website:

www.agingclimatehealth.org

Email:

info@agingclimathealth.org

Subscribe to our **Newsletter!**

Funded by the National Institute on Aging (NIA), "Aging and Health in a Changing Climate", R61AG086854

Seminars

Measuring Extreme Temperatures and Thermal Comfort in Aging and Demographic Research

March 19th, 2025

Social & Environmental Data Integration at the U.S. County Scale

February 18th, 2025

Climate Systems 101 with an Application to Health

May 15th, 2025

Workshops Seed grants

Code

This code analyzes the questions regarding displacement due to disasters in US Census Bureau's Household Pulse Survey.

Learn more →

Code linking SHELDUS with ACS data

This code links the American Community Survey (ACS) microdata with the Spatial Hazards Events and Losses Database for the United States (SHELDUS).

Learn more →

Office hours!

Summary

- Many data sources
- Carefully consider measurement, spatial, and temporal scales
- Collaborate; Literature;
 Outcome/Mechanism
- Seek support you're not alone!

Lori M. Hunter Director, Institute of Behavioral Science Co-Director, Center for Aging, Climate, and Health (CACHE) Professor of Sociology

Prepared for Cross-Network Meeting to Advance Research on Aging, Health, & Place

Center for Aging, Climate & Health